
Introdução ao R e ao RStudio

O objetivo deste laboratório é introduzir ao R e ao RStudio, os programas que você usará ao longo do
curso tanto para aprender os conceitos estatísticos discutidos no livro quanto para analisar dados reais e
chegar a conclusões informadas. Para já distinguir qual é qual: R é o nome da linguagem de programação
e RStudio é uma interface gráfica conveniente para utilizar o R.

À medida que os laboratório avançarem, você é encorajado a explorar além do que os laboratórios pro-
põem; a vontade de experimentar o fará um programador muito melhor. Antes de chegarmos a este
estágio, contudo, você precisa desenvolver alguma fluência básica em R. Hoje nós começaremos com os
blocos fundamentais do R e do RStudio: a interface, importação de dados, e comandos básicos.

O painel na parte superior-direita contém seu espaço de trabalho e também um histórico dos comandos
que você utilizou anteriormente. Quaisquer gráficos que você gerar aparecerá no painel no canto inferior
direito.

O painel à esquerda é onde a ação acontece. Ele é chamado de console. Toda vez que você iniciar o
RStudio, ele terá o mesmo texto no topo do console dizendo qual versão do R você está rodando. Abaixo
desta informação está o comando de linha. Como o nome sugere, ele interpreta qualquer entrada como
um comando a ser executado. Inicialmente, a interação com o R é feita principalmente pela digitação de
comandos e a interpretação dos resultados. Esses comandos e sua sintaxe evoluíram ao longo de décadas
(literalmente) e agora proporcionam o que muitos usuários acreditam ser um forma bastante natural de
acessar dados e organizar, descrever e invocar computações estatísticas.

Para iniciar, entre o seguinte comando no comando de linha do R (i.e. logo depois do > no comando de
linha). Você pode digitar o comando manualmente ou copiar e colar deste documento.

source("http://www.openintro.org/stat/data/arbuthnot.R")

Este comando instrui o R a acessar o website da OpenIntro e buscar alguns dados: a contagem de batismos
de meninos e meninas coletada por Arbuthnot . Você deve ver que a área do espaço de trabalho no canto
superior direito da janela do RStudio agora lista um conjunto de dados chamado arbuthnot que tem 82
observações de três variáveis. À medida que você interage com o R, você criará uma série de objetos. Às
vezes você os carregará como nós fizemos aqui, e às vezes você os criará por conta própria como o produto
de uma computação ou alguma análise que você realizou. Preste atenção que, por você estar acessando os
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dados a partir da internet, esse comando (e todas as tarefas) funcionará num laboratório de informática,
na biblioteca, ou na sua casa; em qualquer lugar que você tenha acesso à internet.

Os Dados: Registro de Batismos do Dr. Arbuthnot

O conjunto de dados Arbuthnot se refere ao Dr. John Arbuthnot, um médico, escritor e matemático do
século 18. Ele se interessou pela razão de meninos e meninas recém-nascidos, e para isso ele coletou os
registros de batismo de crianças nascidas em Londres todos os anos entre 1629 e 1710. Nós podemos dar
uma olhada nos dados digitando seu nome no comando de linha.

arbuthnot

Você deve ver quatro colunas de números, com cada linha representando um ano diferente: a primeira
entrada em cada linha é simplesmente o número da linha (um índice que podemos usar para acessar os
dados de anos individuais, se quisermos), a segunda é o ano, e a terceira e a quarta são os números de
meninos e meninas batizados naquele ano, respectivamente. Use a barra de rolagem à direita da janela do
console para examinar o conjunto de dados completo.

Preste atenção que os números das linhas na primeira coluna não fazem parte dos dados de Arbuthnot. O
R os adiciona como parte das impressões em tela para ajudá-lo a fazer comparações visuais. Pense neles
como um índice que costuma ficar no lado esquerdo de uma planilha. A comparação com uma planilha
geralmente será útil, de fato. O R armazenou os dados de Arbuthnot em um tipo de planilha ou tabela
chamada de data frame ou banco de dados.

Você pode ver as dimensões deste banco de dados digitando:

dim(arbuthnot)

Este comando deve dar como resposta [1] 82 3, indicando que há 82 linhas e 3 colunas (nós já voltaremos
ao que o [1] quer dizer), da mesma forma como está especificado ao lado do objeto em seu espaço de
trabalho. Você pode ver os nomes das colunas (ou variáveis) digitando:

names(arbuthnot)

Você deve ver que o banco de dados contém as colunas year (ano), boys (meninos), e girls (meninas). A
essa altura, você deve ter notado que muitos dos comandos no R se parecem muito com funções matemá-
ticas; ou seja, invocar comandos do R significa passar a uma função um certo número de argumentos. Os
comandos dim e names, por exemplo, precisaram de um único argumento cada um: o nome do banco de
dados.

Uma vantagem do RStudio é que ele vem com um visualizador de dados embutido. Clique no nome
arbuthnot no canto superior direito da janela que lista os objetos em seu espaço de trabalho. Isso fará com
que uma visualização alternativa das contagens de Arbuthnot apareça na janela superior esquerda. Você
pode fechar o visualizador de dados clicando no “x” no canto superior esquerdo.

Explorando

Vamos começar a examinar os dados um pouco mais de perto. Nós podemos acessar separadamente os
dados de uma única coluna da base de dados usando um comando como
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arbuthnot$boys

Este comando mostrará somente o número de meninos batizados em cada ano.

Exercício 1 Qual comando você utilizaria para extrair somente a contagem de meninas batiza-
das? Experimente!

Preste atenção que a maneira como o R imprimiu esses dados é diferente. Quando nós visualizamos
o banco de dados completo, vimos 82 linhas, uma em cada linha do console. Esses dados não estão
mais estruturados em uma tabela com outras variáveis, então eles são dispostos um ao lado do outro.
Objetos que são impressos na tela desta maneira são chamados de vetores; eles representam um conjunto de
números. O R adicionou números em [colchetes] no lado esquerdo dos resultados para indicar localizações
dentro do vetor. Por exemplo, 5218 segue [1], indicando que 5218 é a primeira entrada no vetor. E se
[43] inicia uma linha, então isso significa que o primeiro número naquela linha representa a 43a entrada
no vetor.

O R tem algumas funções poderosas para criar gráficos. Podemos criar uma gráfico simples do número de
meninas batizadas por ano com o comando

plot(x = arbuthnot$year, y = arbuthnot$girls)

Por padrão, o R cria uma gráfico de dispersão com cada par x,y indicado por um círculo aberto. O gráfico
deve aparecer sob a aba “Plots” no canto inferior direito do RStudio. Repare que o comando acima também
se parece com uma função, desta vez com dois argumentos separados por vírgula. O primeiro argumento
na função de gráfico especifica a variável para o eixo x e o segundo para o eixo y. Se nós quiséssemos
conectar os pontos dos dados com linhas, nós poderíamos adicionar um terceiro argumento, a letra “l” de
linha.

plot(x = arbuthnot$year, y = arbuthnot$girls, type = "l")

Você pode se perguntar como você poderia saber que era possível adicionar aquele terceiro argumento.
Felizmente, o R tem documentações extensivas de todas as suas funções. Para ler o que a função faz e
aprender os argumentos disponíveis, basta digitar um ponto de interrogação seguido pelo nome da função
na qual vocês está interessado. Tente o seguinte.

?plot

Veja que o arquivo de ajuda substitui o gráfico no painel no canto inferior direito. Você pode alternar entre
gráficos e arquivos de ajuda usando as abas no topo daquele painel.

Exercício 2 Há alguma tendência aparente no número de meninas batizadas ao longo dos
anos? Como você a descreveria?

Agora, vamos supôr que queiramos fazer um gráfico com o número total de batismos. Para calcular isso,
nós podemos nos aproveitar do fato de que o R é, na verdade, apenas uma grande calculadora. Nós
podemos digitar expressões matemáticas como

5218 + 4683
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para ver o número total de batismos em 1629. Nós podemos repetir isso para cada ano, mas há um modo
mais rápido. Se adicionarmos o vetor de batismo para meninos e meninas, o R irá computar todas as
somas simultaneamente.

arbuthnot$boys + arbuthnot$girls

O que você verá são 82 números (naquela exibição compacta, porque não estamos analisando um banco
de dados), cada um representando a soma que nós queremos. Dê uma olhada em alguns deles e verifique
se eles estão corretos. Portanto, nós podemos criar um gráfico com o total de batismos por ano com o
comando

plot(arbuthnot$year, arbuthnot$boys + arbuthnot$girls, type = "l")

Desta vez, veja que nós deixamos de fora os nomes dos dois primeiros argumentos. Nós podemos fazer
isso porque o arquivo de ajuda mostra que o padrão para o comando plot é ter a variável x como primeiro
argumento e a variável y como segundo argumento.

De maneira similar como calculamos a proporção de meninos, podemos computar a razão entre o número
de meninos e o número de meninas batizadas em 1629 com

5218 / 4683

ou podemos utilizar os vetores completos com a expressão

arbuthnot$boys / arbuthnot$girls

A proporção de recém-nascidos que são meninos

5218 / (5218 + 4683)

ou também pode ser calculado para todos os anos simultaneamente:

arbuthnot$boys / (arbuthnot$boys + arbuthnot$girls)

Preste atenção que usando o R como sua calculadora, você precisa prestar atenção da ordem das operações.
Aqui, nós queremos dividir o número de meninos pelo total de recém-nascidos, portanto precisamos usar
parênteses. Sem eles, o R efetuará primeiro a divisão, depois a adição, dando como resultado algo que não
é uma proporção.

Exercício 3 Agora, crie um gráfico das proporções dos meninos com relação ao tempo. O
que você percebe? Dica: se você usar as teclas de flecha para cima e para baixo, você pode
retomar os comando prévios, chamado de histórico de comandos. Você também pode acessá-lo
clicando na aba “history” no painel no canto superior direito. Isto irá lhe economizar várias
digitações no futuro!

Por fim, além de operadores matemáticos simples como subtração e divisão, você pode pedir para o R
fazer comparações como mair que, >, menor que, <, e igualdade, ==. Por exemplo, podemos perguntar
se o número de meninos é maior que de meninas em cada ano com a expressão
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arbuthnot$boys > arbuthnot$girls

Este comando retorna 82 valores ou do tipo TRUE (verdadeiro) se aquele ano teve mais meninos batizados
do que meninas, ou FALSE (falso) se naquele ano foi o contrário (a resposta pode surpreendê-lo). Esse re-
sultado mostra um tipo diferente de variável daquelas que vimos até agora. No banco de dados arbuthnot
nossos dados são numéricos (o ano, o número de meninos e meninas). Aqui, nós pedimos para o R criar
dados lógicos, dados cujos valores são TRUE (verdadeiro) ou FALSE (falso). De modo geral, a análise de da-
dos envolverá vários tipos diferentes de dados, e uma razão para usar o R é que ele consegue representar
e realizar computações com vários tipos de dados.

Já é o bastante para seu primeiro laboratório, então vamos parar por aqui. Para sair do RStudio você pode
clicar no “x” no canto superior direto da janela do aplicativo. Você será questionado se quer salvar seu
espaço de trabalho. Se você clicar em “save” (salvar), o RStudio salvará seu histórico e todos os objetos
de seu espaço de trabalho para que na próxima vez que você inicializar o RStudio, você verá o objeto
arbuthnot e você terá acesso aos comando que você digitou nas suas sessões prévias. Por enquanto, clique
em “save”, e depois reinicialize o RStudio.

Sua Vez

Nas páginas anteriores, você recriou algumas das exposições e análises preliminares dos dados de batismo
de Arbuthnot. Sua tarefa consiste repetir essas etapas, mas para os registros atuais de nascimento dos
Estados Unidos. Carregue os dados atuais com o seguinte comando.

source("http://www.openintro.org/stat/data/present.R")

Os dados serão armazenados num banco de dados chamado present.

1. Quais anos estão incluídos neste conjunto de dados? Quais são as dimensões da base de dados e
quais são os nomes das colunas ou variáveis?

2. Como estas contagens se comparam aos dados de Arbuthnot? Eles estão numa escala similar?

3. A observação de Arbuthnot de que os meninos nascem numa proporção maior que as meninas se
mantém nos EUA?

4. Crie um gráfico que mostre a razão de meninos para meninas para cada ano do conjunto de dados.
O que você pode verificar?

5. Em qual ano se verifica o maior número de nascimentos nos EUA? Você pode utilizar os arquivos de
ajuda ou o cartão de referência do R (http://cran.r-project.org/doc/contrib/Short-refcard.pdf ) para encon-
trar comandos úteis.

Esses dados são provenientes de uma pesquisa realizada pelo Centro de Controle de Doenças (Center
For Disease Control) (http://www.cdc.gov/nchs/data/nvsr/nvsr53/nvsr53_20.pdf ). Confira-o se você desejar
ler mais sobre a análise da razão entre os sexos nos nascimentos nos Estados Unidos.

Esta foi uma curta introdução ao R e ao RStudio, mas nós forneceremos mais funções e um sentido
mais completa da linguagem ao longo do curso. Sinta-se livre para procurar na internet pelo R http:
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//www.r-project.org e o RStudio http://rstudio.org se vocês estiver interessado em aprender mais, ou encontre
mais laboratórios para praticar em http://openintro.org.
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Laboratório 1: Introdução à Análise de Dados

Algumas pessoas definem a Estatística como a ciência que tem por objetivo transformar informação em
conhecimento. O primeiro passo no processo é sumarizar e descrever a informação bruta - os dados. Neste
laboratório, você obterá novos conhecimento sobre saúde pública gerando sumários gráficos e numéricos
de um conjunto de dados coletados pelo Centro para o Controle e Prevenção de Doenças (“Centers for
Disease Control and Prevention”, CDC). Como esse conjunto de dados é grande, ao longo do caminho
você também aprenderá as habilidades indispensáveis de processamento de dados e organização de sub-
conjuntos.

Preparações

O Sistema de Monitoramento de Fatores de Risco Comportamental (“Behavioral Risk Factor Surveillance
System”, BRFSS) é um survey anual realizado por telefone com 350.000 pessoas nos Estados Unidos. Como
seu nome implica, o BRFSS foi desenvolvido para identificar fatores de risco na população adulta e relatar
tendências emergentes na saúde. Por exemplo, os respondentes são indagados sobre sua dieta e atividades
físicas semanais, seu diagnóstico de HIV/AIDS, uso provável de tabaco, e mesmo seu nível de cobertura
por planos de saúde. O website do BRFSS (http://www.cdc.gov/brfss) contém uma descrição completa desta
pesquisa, incluindo as questões de pesquisa que motivaram o estudo e muitos resultados interessantes
derivados dos dados.

Nós nos focaremos numa amostra aleatória de 20.000 pessoas do BRFSS conduzido em 2000. Ainda
que existam mais de 200 variáveis neste conjunto de dados, nós trabalharemos com um subconjunto me-
nor.

Começamos importando os dados das 20.000 observações para dentro do espaço de trabalho do R. Depois
de inicializar o RStudio, entre com o seguinte comando.

source("http://www.openintro.org/stat/data/cdc.R")

O conjunto de dados cdc que aparece em seu espaço de trabalho é uma matriz de dados, com cada linha
representando um caso e cada coluna representando uma variável. O R denomina este formato de dados
como banco de dados (data frame), que será um termo utilizado ao longo dos laboratórios.

Para visualizar o nome das variáveis, digite o comando

names(cdc)

Este comando retorna os nomes genhlth, exerany, hlthplan, smoke100, height, weight, wtdesire, age,
e gender. Cada uma dessas variáveis corresponde a uma questão que foi feita na pesquisa. Por exemplo,
para genhlth, os respondentes foram indagados sobre sua saúde geral, respondendo excelente, muito
bom, bom, razoável ou ruim. A variável exerany indica se o respondente se exercitou no último mês (1)
ou não (0). Da mesma forma, hlthplan indica se o respondente tem alguma forma de cobertura (1) ou
não (0). A variável smoke100 indica se o respondente fumou pelo menos 100 cigarros ao longo da vida. As
outras variáveis registram a altura (height ) em polegadas, o peso (weight) em libras, bem como o peso
desejado (wtdesire), idade (age) em anos, e gênero (gender)

Exercício 1 Há quantos casos neste conjunto de dados? Quantas variáveis? Para cada variável,
identifique seu tipo de dado (p.e., categorial, discreta).

Este é um produto da OpenIntro que é distribuído sob uma Licença Creative Commons Atribuição – Compartilhamento pela
Mesma Licença 3.0 (http://creativecommons.org/licenses/by-sa/3.0). Este laboratório foi adaptado para a OpenIntro por Andrew Bray
e Mine Çetinkaya-Rundel de um laboratório escrito por Mark Hansen do departamento de Estatística da UCLA. Tradução para o
português por Erikson Kaszubowski.
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Nós podemos dar uma olhada nas primeiras entradas (linhas) de nossos dados com o comando

head(cdc)

e, similarmente, podemos verificar as últimas digitando

tail(cdc)

Você também pode verificar toda a base de dados de uma vez só digitando seu nome no console, mas isso
pode não ser muito sábio neste contexto. Sabemos que cdc tem 20.000 linhas, portanto verificar o conjunto
de dados inteiro significa inundar sua tela. É melhor dar pequenas espiadas nos dados utilizando head,
tail, ou as técnicas de construção de subconjunto que você aprenderá logo em seguida.

Sumários e Tabelas

O questionário do BRFSS é um tesouro enorme de informações. Um primeiro passo útil em qualquer
análise é destilar toda essa informação em algumas estatísticas sumárias e gráficos. Como um exemplo
simples, a função summary retorna um sumário numérico: mínimo, primeiro quartil, mediana, média,
segundo quartil, e máximo. Para a variável weight, esse sumário é:

summary(cdc$weight)

O R também funciona como uma calculadora poderosa. Se vocês quisesse calcular o intervalo interquartil
para o peso dos respondentes, você pode se basear na saída do comando acima e então digitar

190 - 140

O R também tem funções embutidas para calcular estatísticas descritivas uma por uma. Por exemplo, para
calcular a média, mediana, e variância da variável weight, digite

mean(cdc$weight)

var(cdc$weight)

median(cdc$weight)

Ainda que faça sentido descrever uma variável quantitativa como weight em termos destas estatísticas,
o que fazer com dados categoriais? Nós podemos considerar a frequência da amostra ou a distribuição
relativa de frequência. A função table faz isso por você contando o número de vezes que cada tipo de
resposta é dada. Por exemplo, para ver o número de pessoas que fumaram 100 cigarros ao longo de sua
vida, digite

table(cdc$smoke100)

Ou então verifique a distribuição de frequência relativa digitando
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table(cdc$smoke100)/20000

Perceba como o R automaticamente divide todas as entradas na tabela por 20.000 no comando acima. Isso
é similar a algo que observamos no último laboratório; quando multiplicamos ou dividimos um vetor
por um número, o R aplica essa ação a todas as entradas dos vetores. Como vimos acima, isso também
funciona para tabelas. Em seguida, criamos um gráfico de barras para as entradas na tabela inserindo a
tabela dentro do comando para gráficos de barra.

barplot(table(cdc$smoke100))

Preste atenção no que fizemos agora! Nós computamos a tabela da variável cdc$smoke100 e então imedia-
tamente aplicamos a função gráfica, barplot. Esta é uma ideia importante: os comandos do R podem ser
aninhados. Você também pode dividir esse procedimento em dois passos digitando o seguinte:

smoke <- table(cdc$smoke100)

barplot(smoke)

Agora, criamos um novo objeto, uma tabela, denominada smoke (seu conteúdo pode ser verificado digi-
tando smoke no console) e então a utilizamos como entrada para o comando barplot. O símbolo especial
<- realiza uma atribuição, tomando a saída de uma linha de código e salvando-a em um objeto no seu
espaço de trabalho. Esta é outra ideia importante para a qual retornaremos mais tarde.

Exercício 2 Crie um sumário numérico para height (altura) e age (idade), e calcule o inter-
valo interquartílico para cada um. Calcule a distribuição de frequência relativa para gender

e exerany. Quantos homens compõem a amostra? Qual proporção da amostra diz estar com
saúde excelente?

O comando table pode ser utilizado para tabular qualquer número de variáveis que você quiser. Por
exemplo, para examinar quais participantes fumam, dividido por gênero, nós podemos utilizar o seguinte
código.

table(cdc$gender,cdc$smoke100)

Aqui, vemos etiquetas de coluna formadas por 0 e 1. Lembre-se que o 1 indica que o respondente fumou
pelo menos 100 cigarros. As linhas se referem ao gênero. Para criar um gráfico de mosaico para essa
tabela, entramos com o seguinte comando.

mosaicplot(table(cdc$gender,cdc$smoke100))

Nós poderíamos ter conseguido esse resultado em duas etapas: salvando a tabela em uma linha e aplicando
mosaicplot em seguida (veja o exemplo de tabela/gráfico de barras acima).

Exercício 3 O que o gráfico de mosaico revela sobre os hábitos de fumar e gênero?

3



Interlúdio: Como o R Pensa a Respeito dos Dados

Mencionamos que o R armazena os dados em bases de dados, que você pode pensar como um tipo de
planilha. Cada linha é uma observação diferente (um respondente diferente) e cada coluna é uma variável
diferente (a primeira é genhlth, a segunda é exerany e assim por diante). Nós podemos visualizar o
tamanho da base de dados ao lado do nome do objeto na área de trabalho ou podemos digitar

dim(cdc)

o que faz retornar o número de linhas e colunas. Agora, se quisermos acessar um subconjunto da base de
dados completa, nós podemos utilizar a notação de linhas-e-colunas. Por exemplo, para visualizar a sexta
variável do 567o respondente, utilize o comando

cdc[567,6]

que significa que nós queremos o elemento de nosso conjunto de dados que está na 567a linha (ou seja, a
567a pessoa ou observação) e na 6a coluna (nesse caso, o peso). Sabemos que weight (peso) é a 6a variável
porque ela é a 6a entrada na lista de nomes de variáveis.

names(cdc)

Para visualizar os pesos para os primeiros 10 respondentes, podemos digitar

cdc[1:10,6]

Nesta expressão, nós pedimos somente pelas linhas no intervalo entre 1 e 10. O R usa o “:” para criar um
intervalo de valores, de tal forma que 1:10 se expande para 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Você pode visualizar
isso digitando

1:10

Finalmente, se nós queremos todos os dados dos 10 primeiros respondentes, digite

cdc[1:10,]

Ao deixar de fora um índice ou intervalo (nós não digitamos nada entre a vírgula e o colchete), nós
obtemos todas as colunas. Quando iniciamos o uso do R, isso parece um pouco contra-intuitivo. Como
um regra geral, omitimos o número da coluna para ver todas as colunas numa base de dados. Da mesma
forma, se deixamos de fora um índice ou intervalo para as linhas, nós acessaríamos todas as observações,
não apenas a 567a, ou as linhas 1 a 10. Experimente o código seguinte para ver o peso de todos os 20.000
respondentes passarem voando por sua tela

cdc[,6]

Recorde que a coluna 6 representa o peso dos respondentes, e portanto o comando acima mostra todos
os pesos no conjunto de dados. Um método alternativo para acessar os dados sobre peso é utilizar o seu
nome. Anteriormente, digitamos names(cdc) para ver todas as variáveis contidas no conjunto de dados
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cdc. Nós podemos utilizar qualquer um dos nomes de variáveis para selecionar itens no seu conjunto de
dados.

cdc$weight

O cifrão informa ao R para recuperar na base de dados cdc a coluna denominada weight. Uma vez que
se trata de um único vetor, podemos formar subconjuntos utilizando apenas um único índice dentro dos
colchetes. Nós verificamos o peso para o 567o respondente digitando

cdc$weight[567]

Da mesma forma, para apenas os 10 primeiros respondentes

cdc$weight[1:10]

O comando acima retorna o mesmo resultado que o comando cdc[1:10,6]. Tanto a notação linha-e-
coluna quanto a notação utilizando o cifrão são amplamente utilizadas. Qual você escolhe depende da sua
preferência pessoal.

Um Pouco Mais Sobre Formação de Subconjuntos

É frequentemente útil extrair todos os sujeitos (casos) de um conjunto de dados que possuem características
específicas. Nós conseguimos isso por meio de comando condicionais. Primeiramente, considere expressões
como

cdc$gender == "m"

ou

cdc$age > 30

Esses comandos produzem uma série de valores TRUE (verdadeiro) e FALSE (falso). Há um valor para cada
respondente, sendo que TRUE indica que a pessoa era do sexo masculino (pelo primeiro comando) ou mais
velha que 30 anos (segundo comando).

Vamos supor que queiramos extrair apenas os dados para homens na amostra, ou apenas para aqueles
acima de 30 anos. Nós podemos utilizar a função do R subset para fazer isso por nós. Por exemplo, o
comando

mdata <- subset(cdc, cdc$gender == "m")

criará um novo conjunto de dados denominado mdata que contém apenas os homens do conjunto de dados
cdc. Além de poder encontrá-lo em seu espaço de trabalho junto com suas dimensões, você pode dar uma
olhada nas primeiras linhas como já fizemos
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head(mdata)

Este novo conjunto de dados contém as mesmas variáveis mas cerca de metade das linhas. Também é
possível pedir para o R manter apenas variáveis específicas, um tópico que abordaremos num laboratório
no futuro. Por enquanto, o importante é que podemos desmembrar os dados com base nos valores de uma
ou mais variáveis.

Você também pode utilizar vários condicionais em conjunto com & e |. O & é lido como “e” de tal forma
que

m_and_over30 <- subset(cdc, cdc$gender == "m" & cdc$age > 30)

resultará nos dados para homens acima de 30 anos de idade. O caractere | é interpretado como “ou” de
tal forma que

m_or_over30 <- subset(cdc, cdc$gender == "m" | cdc$age > 30)

selecionará pessoas que são homens ou então acima de 30 anos (por que esse grupo seria interessante é
difícil dizer, mas por enquanto entender o comando é o mais importante). A princípio, você pode utilizar
quantos “e” e “ou” você quiser quando formar um subconjunto.

Exercício 4 Crie um novo objeto denominado under23_and_smoke (ou, se preferir, abaixo23_e_fuma)
que contém todas as observações dos respondentes com menos de 23 anos que fumaram pelo
menos 100 cigarros ao longo de sua vida. Escreva o comando que você utilizou para criar o
novo objeto como resposta para esse exercício.

Dados Quantitativos

Com nossas ferramentas para criar subconjuntos a postos, podemos retornar à tarefa de hoje: criar sumá-
rios básicos do questionário BRFSS. Nós já olhamos os dados categoriais como smoke (fumante) e gender

(gênero). Agora vamos nos concentrar nos dados quantitativos. Duas formas comuns de visualizar dados
quantitativos é por meio de gráfico de caixas e histogramas. Nós podemos construir um gráfico de caixas
para uma única variável com o seguinte comando.

boxplot(cdc$height)

Você pode comparar a localização dos componentes da caixa examinando as estatísticas sumárias.

summary(cdc$height)

Confirme que a mediana e os quartis superior e inferior informados no sumário numérico batem com os
apresentados no gráfico. O objetivo de um gráfico de caixa é prover um pequeno esboço de uma variável
com o propósito de comparar entre várias categorias. Podemos, por exemplo, comparar as alturas de
homens e mulheres com

boxplot(cdc$height ~ cdc$gender)
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A notação aqui é nova. O caractere ~ pode ser lido como “versus” ou “como uma função de”. Estamos,
portanto, pedindo ao R para nos dar um gráfico de caixas das alturas no qual os grupos são definidos pelo
gênero.

Na sequência, consideremos uma nova variável que não aparece diretamente neste conjunto de dados: o
Índice de Massa Corporal (IMC). IMC é uma razão entre peso e altura que pode ser calculado da seguinte
maneira:

IMC =
peso (lbs)

altura (pols)2 ∗ 703†

As duas linhas seguintes criam um novo objeto chamado bmi (de Body Mass Index) e então criamos um
gráfico de caixas para esses valores, definindo grupos pela variável cdc$genhlth

bmi <- (cdc$weight / cdc$height^2) * 703

boxplot(bmi ~ cdc$genhlth)

Perceba que a primeira linha acima é apenas aritmética, mas é aplicada para todos os 20.000 número do
conjunto de dados cdc. Ou seja, para cada um dos 20.000 participantes, pegamos seu peso, dividimos
pelo quadrado de sua altura e multiplicamos por 703. O resultado é 20.000 valores de IMC, um para cada
respondente. Essa é uma das razões pela qual gostamos do R: ele nos permite realizar cálculos como esse
utilizando expressões bem simples.

Exercício 5 O que este gráfico de caixas mostra? Escolha outra variável categorial do conjunto
de dados e verifique como ela se relaciona ao IMC. Liste a variável que você escolheu, por que
você pensou que ela poderia ter relação com o IMC e indique o que o gráfico parece sugerir.

Por fim, vamos fazer alguns histogramas. Nós podemos verificar o histograma da idade de nossos respon-
dentes com o comando

hist(cdc$age)

Histogramas são geralmente uma boa maneira de visualizar a forma de uma distribuição, mas essa forma
pode mudar dependendo como os dados são divididos entre os diferentes segmentos. Você pode controlar
o número de segmentos adicionando um argumento ao comando. Nas próximas duas linhas, primeiro
fazemos um histograma padrão da variável bmi e depois um com 50 segmentos.

hist(bmi)

hist(bmi, breaks = 50)

Perceba que você pode alternar entre gráficos que você criou clicando nas flechas de avançar e retroceder
na região inferior direita do RStudio, logo acima dos gráficos. Quais as diferenças entre esses histogra-
mas?

A esta altura, fizemos uma boa primeira exposição sobre análise das informações no questionário BRFSS.
Nós descobrimos um associação interessante entre fumo e gênero, e nós podemos comentar algo a respeito
da relação entre a avaliação de saúde em geral dada pelas pessoas e seu próprio IMC. Nós também nos

†703 é um fator de conversão aproximado para mudar as unidades do sistema métrico (metro e kilograma) para o sistema imperial
(polegadas e libras). Isso é necessário porque os dados disponíveis estão no sistema imperial. No sistema métrico basta dividir o
peso em quilogramas pelo quadrado da altura em metros.
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apropriamos de ferramentas computacionais essenciais – estatísticas sumárias, subconjuntos, e gráficos –
que nos servirão bem ao longo deste curso.

Sua Vez

1. Crie um gráfico de dispersão da variável peso em relação ao peso desejado. Defina a relação entre
essas duas variáveis.

2. Vamos considerar uma nova variável: a diferença entre o peso desejado (wtdesire) e o peso atual
(weight). Crie esta nova variável subtraindo as duas colunas na base de dados e atribuindo-as a um
novo objeto chamado wdiff.

3. Que tipo de dado está contido na variável wdiff? Se uma observação de wdiff é 0, o que isso implica
com relação ao peso atual e desejado de uma pessoas? E se o valor de wdiff for positivo ou negativo?

4. Descreva a distribuição de wdiff em termos de seu centro, forma e variação, incluindo qualquer
gráfico que você usar. O que isso nos diz sobre como as pessoas se sentem a respeito do seu peso
atual?

5. Utilizando sumários numéricos e um gráfico de caixas lado-a-lado, determine se homens tendem a
ver seu peso diferentemente das mulheres.

6. Agora chegou a hora de usar a criatividade. Encontre a média e o desvio padrão de weight e
determine qual a proporção de pesos que estão a um desvio padrão da média.

7. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.
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Laboratório 2: Probabilidade

Mãos Quentes

Jogadores de basquete que pontuam várias vezes seguidas costumam ser descritos como tendo as “mãos
quentes”. Fãs e jogadores acreditam há muito tempo no fenômeno da mão quente, que refuta o pressu-
posto de que cada lance é independente do próximo. Contudo, um artigo de 1985 escrito por Gilovich,
Vallone e Tversky coletou evidência que contradiz essa crença e mostrou que lances sucessivos são even-
tos independentes.† Este artigo iniciou uma grande controvérsia que continua até hoje, como você pode
verificar se procurar por “hot hand basketball” no Google.

Não temos a expectativa de resolver esta controvérsia hoje. Entretanto, neste laboratório nós aplicaremos
um procedimento para responder a questões como essa. Os objetivos deste laboratório são (1) refletir sobre
o efeito de eventos independentes e dependentes, (2) aprender como simular sequências de lances no R, e
(3) comparar a simulação com os dados efetivos para determinar se o fenômeno das mãos quentes parece
ser real.

Salvando seu Código

Clique em File → New → R Script. Um documento em branco será aberto acima do console. À medida
que o laboratório avançar, você pode copiar e colar seu código aqui e salvá-lo. Esta é uma boa maneira
de manter um registro do seu código e reutilizá-lo mais tarde. Para executar seu código a partir deste
documento, você pode ou copiar e colar os comandos no console, ou selecionar o código e clicar no botão
Run (Executar), ou então selecionar o código e pressionar command+enter se estiver utilizando um Mac ou
control+enter num PC.

Você também poderá salvar este script (documento de código). Para fazer isso basta clicar no ícone de
disquete. A primeira vez que você pressionar o botão de salvar, o RStudio pedirá por um nome de
arquivo; você pode dar qualquer nome que quiser. Depois de clicar em salvar você verá o arquivo aparecer
sob a aba Files no painel inferior direito. Você pode reabrir este arquivo a qualquer momento simplesmente
clicando sobre ele.

Preparações

Nossa investigação focará na performance de um jogador: Kobe Bryant do Los Angeles Lakers. Sua
performance contra o Orlando Magic nas finais de 2009 da NBA lhe deram o título de “Jogador Mais
Valioso” e vários espectadores comentaram como ele parecia demonstrar uma mão quente. Vamos carregar
alguns dados desses jogos e analisar as primeiras linhas.

download.file("http://www.openintro.org/stat/data/kobe.RData", destfile = "kobe.RData")

load("kobe.RData")

head(kobe)

Neste banco de dados, cada linha registra um lance feito por Kobe Bryant. Se ele acertou o lance (fez uma
cesta), um acerto, H (de Hit), é registrado na coluna denominada basket (cesta); caso contrário um erro, M
(de Miss), é registrado.

Este é um produto da OpenIntro que é distribuído sob uma Licença Creative Commons Atribuição – Compartilhamento pela
Mesma Licença 3.0 (http://creativecommons.org/licenses/by-sa/3.0). Este laboratório foi adaptado para a OpenIntro por Andrew Bray
e Mine Çetinkaya-Rundel de um laboratório escrito por Mark Hansen do departamento de Estatística da UCLA. Tradução para o
português por Erikson Kaszubowski.

†“The Hot Hand in Basketball: On the Misperception of Random Sequences”, Gilovich, T., Vallone, R., Tversky, A., 1985. Cognitive
Psychology, 17, pp. 295-314.
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Apenas olhando para a sequência de acertos e erros pode ser difícil de aferir se é possível que Kobe estava
arremessando com as mãos quentes. Uma maneira possível de abordar este problema é considerar a crença
de que arremessadores com a mão quente tendem a conseguir uma longa sequências de acertos. Para este
laboratório, definiremos o comprimento de uma sequência de acertos como o número de cestas consecutivas
até acontecer um erro.

Por exemplo, no Jogo 1 Kobe teve a seguinte sequência de acertos e erros de suas nove tentativas de
arremessos no primeiro quarto:

H M | M | H H M | M | M | M

Para verificar estes dados no R, use o seguinte comando:

kobe$basket[1:9]

Dentre as nove tentativas de arremesso há seis sequências, que são separadas por um “|” acima. Seus
comprimentos são um, zero, dois, zero, zero, zero (em ordem de ocorrência).

Exercício 1 O que uma sequência de comprimento 1 significa, ou seja, quantos acertos e erros
existem dentro de um sequência de 1? E de uma sequência de comprimento 0?

A função personalizada calc_streak, que foi carregada com os dados, pode ser utilizada para calcular os
comprimentos de todas as sequências de acertos e então conferir sua distribuição.

kobe_streak <- calc_streak(kobe$basket)

barplot(table(kobe_streak))

Perceba que, ao invés de fazer um histograma, escolhemos criar uma gráfico de barras a partir de uma
tabela dos dados das sequências. Uma gráfico de barras é preferível neste contexto uma vez que nossa
variável é discreta – contagens – ao invés de contínua.

Exercício 2 Descreva a distribuição do comprimento das sequências de Kobe nas finais de 2009
da NBA. Qual foi seu tamanho de sequência típico? Quão longa foi sua maior sequência de
cestas?

Comparado a quê?

Mostramos que Kobe teve algumas sequências de arremesso longas, mas elas são longas o suficiente para
apoiar a crença de que ele tinha mãos quentes? Com o que podemos compará-las?

Para responder a essa pergunta, vamos retornar à ideia de independência. Dois processos são independentes
se o resultado de um processo não afeta o resultado do outro. Se cada arremesso que o jogador faz é um
processo independente, ter acertado ou errado o primeiro arremesso não afetará a probabilidade de ele
converter ou errar seu segundo arremesso.

Um arremessador com as mãos quentes terá arremessos que não são independente um do outro. Mais
especificamente, se o arremessador converte seu primeiro arremesso, o modelo das mãos quentes diz que
ele terá uma probabilidade maior de converter seu segundo arremesso.

Vamos supor por um momento que o modelo das mãos quente é válido para Kobe. Durante sua carreira,
o percentual de vezes que Kobe faz uma cesta (ou seja, sua porcentagem de arremessos) é de cerca de 45%,
ou, em notação de probabilidade,

2



P(arremesso 1 = H) = 0.45

Se ele converte o primeiro arremesso e tem as mãos quentes (arremesso não independentes), então a
probabilidade de ele converter seu segundo arremesso deveria aumentar para, digamos, 60%,

P(arremesso 2 = H | arremesso 1 = H) = 0.60

Como um resultado do aumento da probabilidade, seria esperado que Kobe tivesse sequências mais longas.
Compare com a perspectiva cética de que Kobe não tem as mãos quentes, ou seja, que cada arremesso é
independente do próximo. Se ele acerta seu primeiro arremesso, a probabilidade de ele acertar o segundo
continua sendo 0.45.

P(arremesso 2 = H | arremesso 1 = H) = 0.45

Ou seja, converter o primeiro arremesso não afeta de maneira alguma a probabilidade de ele converter seu
segundo arremesso. Se os arremessos de Kobe são independentes, então ele teria a mesma probabilidade
de acertar cada arremesso independentemente de seus arremessos anteriores: 45%.

Agora que reformulamos a situação em termos de arremessos independentes, vamos retornar à questão:
como podemos saber se as sequências de arremessos de Kobe são longas o suficiente para indicar que ele
tem mãos quentes? Podemos comparar o tamanho de suas sequências a alguém que não tem as mãos
quentes: um arremessador independente.

Simulações no R

Apesar de não termos nenhum dado de um arremessador que sabemos fazer arremessos independentes,
esse tipo de dado é muito fácil de simular no R. Numa simulação, você define as regras básicas de um
processo aleatório e então o computador utiliza números aleatórios para gerar um resultado fiel a essas
regras. Como um exemplo simples, você pode simular um lance de uma moeda honesta com o seguinte
código:

outcomes <- c("heads", "tails")

sample(outcomes, size = 1, replace = TRUE)

O vetor outcomes (resultados) pode ser entendido como um chapéu com duas tiras de papel dentro dele:
numa tira está escrito “cara” (“heads”) e na outra “coroa” (“tails”). A função sample (amostra) sorteia uma
tira de dentro do chapéu e revela se ela é cara ou coroa.

Execute o segundo comando listado acima várias vezes. Da mesma maneira quando jogando uma moeda,
algumas vezes você obterá cara, algumas vezes você obterá coroa, mas a longo prazo você esperaria obter
um número mais ou menos igual de cada.

Se você quisesse simular o lançamento de uma moeda honesta 100 vezes, você poderia ou rodar a função
100 vezes ou, mais simples, ajustar o argumento size (tamanho), que regula quantas amostras retirar (o
argumento replace = TRUE indica que nós recolocamos a tira de papel de volta no chapéu antes de retirar
outra amostra). Salve o vetor resultante de cara ou coroa num novo objeto denominado sim_fair_coin

(ou, se preferir, sim_moeda_honesta).

sim_fair_coin <- sample(outcomes, size = 100, replace = TRUE)

3



Para visualizar os resultados desta simulação, digite o nome do objeto e então use o comando table pra
contar o número de caras e coroas.

sim_fair_coin

table(sim_fair_coin)

Uma vez que há apenas dois elementos no vetor outcomes, a probabilidade de um lance de uma moeda dar
cara é 0.5. Digamos que estamos tentando simular uma moeda viciada que sabemos que dá cara somente
20% das vezes. Podemos ajustar adicionando um argumento denominado prob, que fornece um vetor de
dois pesos de probabilidade.

sim_unfair_coin <- sample(outcomes, size = 100, replace = TRUE, prob = c(0.2, 0.8))

prob=c(0.2,0.8) indica que, para os dois elementos no vetor outcomes, nós queremos selecionar o pri-
meiro, heads (cara), com probabilidade 0.2, e o segundo, tails (coroa), com probabilidade 0.8. †

Exercício 3 Em sua simulação de lançar uma moeda viciada 100 vezes, quantos lances deram
cara?

Num certo sentido, nós reduzimos o tamanho da tira de papel que diz “cara”, tornando-o menos provável
de ser escolhido, e nós aumentamos o tamanho da tira de papel que diz “coroa”, tornando-o mais provável
de ser retirado. Quando simulamos a moeda honesta, ambas as tiras de papel tinham o mesmo tamanho.
Isso acontece por padrão se você não fornecer o argumento prob; todos os elementos no vetor outcomes

tem igual probabilidade de serem escolhidos.

Se você quiser saber mais sobre a função sample ou qualquer outra, lembre-se que você pode sempre
conferir seu arquivo de ajuda.

?sample

Simulando o Arremessador Independente

Para simular um jogador de basquete que arremessa de forma independente, utilizamos o mesmo meca-
nismo que empregamos para simular o lance de uma moeda. Para simular um único arremesso de um
arremessador independente, com um percentual de arremesso de 50%, digitamos

outcomes <- c("H", "M")

sim_basket <- sample(outcomes, size = 1, replace = TRUE)

Para podermos fazer uma comparação válida entre Kobe e nosso arremessador independente simulado,
precisamos alinhar tanto seus percentuais de arremesso quanto seus números de arremessos tentados.

Exercício 4 Qual mudança precisa ser feita para que a função sample reflita o percentual
de arremessos de 45%? Faça esse ajuste, e então rode a simulação para uma amostra de 133

†Outra maneira de pensar sobre esse cenário é imaginar o espaço amostral como um saco contendo 10 fichas, sendo 2 marcadas
como “cara” e 8 como “coroa”. Portanto, a cada seleção, a probabilidade de retirar uma ficha escrito “cara” é 20% e “coroa” é 80%.
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arremessos. Atribua o resultado dessa simulação a um novo objeto chamado sim_basket (se
preferir, sim_cestas).

Perceba que nomeamos o novo vetor como sim_basket, o mesmo nome que demos ao vetor anterior
correspondente a um percentual de arremesso de 50%. Nessa situação, o R sobrescreve o objeto antigo
com o novo, portanto sempre se certifique que você não precisa da informação no vetor antigo antes de
atribuir um novo objeto ao seu nome.

Com os resultados da simulação salvos como sim_basket, temos os dados necessários para comprar Kobe
a nosso arremessador independente. Podemos visualizar os dados de Kobe em conjunto com nossos dados
simulados.

kobe$basket

sim_basket

Ambos os conjuntos de dados representam o resultado de 133 tentativas de arremessos, cada uma com o
mesmo percentual de arremesso de 45%. Sabemos que nosso dados simulados são de uma arremessador
que arremessa de forma independente. Quer dizer, sabemos que o arremessador simulado não tem as
mãos quentes.

Sua vez

Comparando Kobe Bryant ao Arremessador Independente

Utilizando a função calc_streak, calcule o comprimento das sequências do vetor sim_basket.

1. Descreva a distribuição das sequências de arremessos. Qual é o comprimento de sequência típico
para o arremessador independente simulado com um percentual de arremesso de 45%? Quão longa
é a sequência mais longa de cestas em 133 arremessos?

2. Se você rodasse a simulação do arremessador independente uma segunda vez, como você acha que
seria a distribuição de sequências em relação à distribuição da questão acima? Exatamente a mesma?
Mais ou menos parecida? Completamente diferente? Explique seu raciocínio.

3. Como a distribuição dos comprimentos de sequência de Kobe Bryant, analisada na página 2, se
comparam à distribuição de comprimentos de sequência do arremessador simulado? Utilizando
essa comparação, você tem evidência de que o modelo das mãos quentes se ajusta aos padrões de
arremessos de Kobe? Explique.

4. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.
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Laboratório 3: Distribuições de Variáveis Aleatórias

Neste laboratório investigaremos a distribuição de probabilidade que é a mais central para a estatística: a
distribuição normal. Se estamos confiantes de que nossos dados são aproximadamente normais, uma porta
para métodos estatísticos poderosos é aberta. Aqui nós utilizaremos ferramentas gráficas do R para avaliar
a normalidade de nossos dados e também aprender como gerar números aleatórios de uma distribuição
normal.

Os Dados

Esta semana trabalharemos com medidas de dimensões do corpo. Este conjunto de dados contém medidas
de 247 homens e 260 mulheres, a maioria dos quais foram considerados adultos jovens saudáveis.

download.file("http://www.openintro.org/stat/data/bdims.RData", destfile = "bdims.RData")

load("bdims.RData")

Vamos dar uma rápida olhada nas primeiras linhas dos dados.

head(bdims)

Você verá que para cada observação temos 25 medidas, muitas das quais são diâmetros ou circunferências.
Uma chave para os nomes das variáveis pode ser encontrada no site http://www.openintro.org/stat/data/bdims.
php, mas nos focaremos em apenas três colunas para iniciar: peso em kg (wgt), altura em cm (hgt), e sex

(sexo, 1 indica masculino, 0 indica feminino).

Uma vez que homens e mulheres tendem a ter dimensões corporais diferentes, será útil criar dois conjuntos
de dados adicionais: um com os dados dos homens e outro com os dados das mulheres.

mdims <- subset(bdims, bdims$sex == 1)

fdims <- subset(bdims, bdims$sex == 0)

Exercício 1 Elabore um histograma da altura dos homens e um histograma das alturas das
mulheres. Como você descreveria os diferentes aspectos das duas distribuições?

A Distribuição Normal

Na sua descrição das distribuições, você utilizou palavras como “em forma de sino” ou “normal”? É
tentador afirmar isso quando encontramos uma distribuição simétrica e unimodal.

Para verificar quão precisa é essa descrição, podemos desenhar uma curva de distribuição normal sobre
o histograma para ver se os dados seguem uma distribuição normal de perto. Essa curva normal deve
ter a mesma média e desvio padrão dos dados da amostra. Trabalharemos com as alturas das mulheres.
Por isso, vamos armazená-las como um objeto separado e então calcular algumas estatísticas que serão
utilizadas mais adiante.

Este é um produto da OpenIntro que é distribuído sob uma Licença Creative Commons Atribuição – Compartilhamento pela
Mesma Licença 3.0 (http://creativecommons.org/licenses/by-sa/3.0). Este laboratório foi adaptado para a OpenIntro por Andrew Bray
e Mine Çetinkaya-Rundel de um laboratório escrito por Mark Hansen do departamento de Estatística da UCLA. Tradução para o
português por Erikson Kaszubowski.
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fhgtmean <- mean(fdims$hgt)

fhgtsd <- sd(fdims$hgt)

Em seguida, construímos um histograma de densidade que servirá como pano de fundo e utilizamos
a função lines para sobrepor a curva de probabilidade normal. A diferença entre um histograma de
frequência e um histograma de densidade é que, enquanto no histograma de frequência as alturas das
barras somadas resultam no número total de observações, num histograma de densidade as áreas das
barras somadas resultam em 1. A área de cada barra pode ser calculada simplesmente como a altura
× a largura da barra. Um histograma de densidade permite-nos sobrepor corretamente uma curva de
distribuição normal sobre o histograma uma vez que a curva é uma função de densidade de probabilidade
normal. Histogramas de frequência de densidade tem a mesma forma; eles diferem apenas com relação a
seu eixo y. Você pode verificar isso comparando o histograma de frequência que você construiu antes e o
histograma de densidade criado pelos comandos abaixo.

hist(fdims$hgt, probability = TRUE)

x <- 140:190

y <- dnorm(x = x, mean = fhgtmean, sd = fhgtsd)

lines(x = x, y = y, col = "blue")

Depois de criar o histograma de densidade com o primeiro comando, nós criamos as coordenadas dos eixos
x e y para a curva normal. Escolhemos o intervalo de x entre 140 e 190, de forma a abarcar o intervalo
completo da variável fheight. Para criar y, utilizamos a função dnorm para calcular a densidade de cada
um dos valores de x numa distribuição que é normal com média fhgtmean e desvio padrão fhgtsd. O
comando final desenha a curva sobre o gráfico existente (o histograma de densidade) conectando cada
ponto especificado por x e y. O argumento col simplesmente estabelece a cor da linha a ser desenhada.
Se não especificarmos este argumento, a linha seria desenhada na cor preta.†

Exercício 2 Baseado neste gráfico, parece que os dados seguem aproximadamente uma distri-
buição normal?

Avaliando a Distribuição Normal

Verificar visualmente a forma do histograma é uma maneira de determinar se os dados parecem se distri-
buir de maneira quase normal, mas pode ser frustrante decidir quão próximo o histograma está da curva.
Uma abordagem alternativa envolve construir uma gráfico de probabilidade normal, também chamado de
gráfico normal Q-Q, de “quantil-quantil”.

qqnorm(fdims$hgt)

qqline(fdims$hgt)

Um conjunto de dados que é aproximadamente normal resultará em um gráfico de probabilidade no qual
os pontos seguem de perto a linha. Quaisquer desvios da normalidade conduz a desvios desses pontos

†O topo da curva é cortado porque os limites dos eixos x e y são ajustados de forma mais adequada ao histograma. Para ajustar o
eixo y você pode adicionar um terceiro argumento à função de histograma: hist(fdims$hgt, probability = TRUE, ylim = c(0,

0.06)).
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com relação à linha. O gráfico para a altura de mulheres mostra pontos que tendem a seguir a linha mas
com alguns pontos errantes na direção das caudas. Voltamos ao mesmo problema que encontramos com
o histograma acima: quão perto é perto o suficiente?

Uma maneira útil de endereçar essa questão é reformulá-la da seguinte maneira: como gráficos de proba-
bilidade se parecem para dados que sabemos serem provenientes de uma distribuição normal? Podemos
responder a essa pergunta simulando dados a partir de uma distribuição normal utilizando a função
rnorm.

sim_norm <- rnorm(n = length(fdims$hgt), mean = fhgtmean, sd = fhgtsd)

O primeiro argumento indica quantos números você gostaria de gerar, que aqui especificamos para ser
o mesmo número de alturas no conjunto de dados fdims utilizando a função length. Os últimos dois
argumentos determinam a média e o desvio padrão da distribuição normal a partir da qual a amostra
simulada será gerada. Podemos visualizar a forma de nosso conjunto de dados simulado, sim_norm, assim
como seu gráfico de probabilidade normal.

Exercício 3 Faça um gráfico de probabilidade normal do vetor sim_norm. Os pontos caem
todos em cima da linha? Como este gráfico se compara ao gráfico de probabilidade dos dados
reais?

Ainda melhor do que comparar o gráfico original a um único gráfico gerado a partir de uma distribuição
normal é compará-lo a vários outros gráficos utilizando a seguinte função. Pode ser útil clicar no botão
“zoom” na janela do gráfico.

qqnormsim(fdims$hgt)

Exercício 4 O gráfico de probabilidade normal para fdims$hgt parece similar aos gráficos
criados para os dados simulados? Quer dizer, os gráficos fornecem evidência de que as alturas
de mulheres são aproximadamente normais?

Exercício 5 Usando a mesma técnica, determine se os pesos de mulheres parecem ser prove-
nientes de uma distribuição normal.

Probabilidades Normais

Muito bem, agora você tem várias ferramentas para julgar se uma variável se distribui normalmente. Mas
por que deveríamos nos importar?

Acontece que os estatísticos conhecem várias coisas sobre a distribuição normal. Uma vez que decidimos
que a variável aleatória é aproximadamente normal, podemos responder vários tipos de perguntas sobre
aquela variável com relação à probabilidade. Por exemplo, a questão: “Qual é a probabilidade de que uma
mulher adulta jovem escolhida por acaso é maior do que 6 pés (cerca de 182 cm)”? †

Se assumirmos que as alturas de mulheres são distribuídas normalmente (uma aproximação também é
aceitável), podemos encontrar essa probabilidade calculando um escore Z e consultando uma tabela Z
(também denominada de tabela de probabilidade da normal). No R, isto pode ser feito rapidamente com
a função pnorm.

†O estudo que publicou esse conjunto de dados deixa claro que a amostra não foi aleatória e que portanto qualquer inferência
para a população em geral não é recomendada. Nós fazemos isso aqui apenas como um exercício.
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1 - pnorm(q = 182, mean = fhgtmean, sd = fhgtsd)

Perceba que a função pnorm dá como resultado a área sob a curva normal abaixo de um certo valor, q, com
uma dada média e desvio padrão. Uma vez que estamos interessados na probabilidade de que alguém
seja maior do que 182 cm, precisamos calcular 1 menos essa probabilidade.

Presumindo uma distribuição normal nos permitiu calcular uma probabilidade teórica. Se queremos cal-
cular a probabilidade empiricamente, simplesmente precisamos determinar quantas observações se encon-
tram acima de 182 e então dividir este número pelo tamanho total da amostra.

sum(fdims$hgt > 182) / length(fdims$hgt)

Apesar das probabilidades não serem exatamente as mesmas, elas estão perto o suficiente. Quanto mais
perto sua distribuição está da normal, mais precisas as probabilidades teóricas serão.

Exercício 6 Elabore duas questões de probabilidade que você gostaria de responder; uma
com relação à altura de mulheres e outra com relação ao peso de mulheres. Calcule essas
probabilidades usando tanto o método teórico da distribuição normal quanto a distribuição
empírica (quatro probabilidade no total). Qual variável, altura ou peso, teve uma concordância
maior entre os dois métodos?

Sua Vez

1. Agora vamos analisar outras variáveis no conjunto de dados das dimensões corporais. Utilizando
as figuras na próxima página, combine os histogramas com seus gráficos de probabilidade normal.
Todas as variáveis foram estandardizadas (primeiro subtraindo a média, e em seguida dividindo pelo
desvio padrão), de tal forma que as unidades não serão de qualquer ajuda. Se você estiver incerto
com base nessas figuras, gere um gráfico no R para verificar.

(a) O histograma do diâmetro bi-ilíaco (pélvico) feminino (bii.di) pertence ao gráfico de probabili-
dade normal de letra .

(b) O histograma do diâmetro do cotovelo feminino (elb.di) pertence ao gráfico de probabilidade
normal de letra .

(c) O histograma de idade geral (age) pertence ao gráfico de probabilidade normal de letra .

(d) O histograma de profundidade do peito feminino (che.de) pertence ao gráfico de probabilidade
normal de letra .

2. Perceba que os gráficos de probabilidade normal C e D tem um pequeno padrão passo a passo. Por
que você acha que eles são assim?

3. Como você pode ver, gráficos de probabilidade normal podem ser utilizados tanto para avaliar a
normalidade quanto visualizar a assimetria. Crie um gráfico de probabilidade normal para o diâ-
metro do joelho feminino (kne.di). Baseado neste gráfico de probabilidade normal, você diria que
essa variável é simétrica, assimétrica à direita ou assimétrica à esquerda? Utiliza um histograma para
confirmar seu resultado.
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4. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.
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Laboratório 4A: Fundamentos para Inferência Estatística - Distribuições
Amostrais

Neste laboratório, investigaremos os meios pelos quais as estatísticas de uma amostra aleatória de dados
podem servir como estimativas pontuais de parâmetros populacionais. Estamos interessados em formular
uma distribuição amostral de nossa estimativa para aprender sobre as propriedades da estimativa, como sua
distribuição.

Os Dados

Vamos analisar dados do setor imobiliário da cidade de Ames, no estado de Iowa, Estados Unidos. Os
detalhes de cada transação imobiliária na cidade de Ames é registrada pelo escritório da Secretaria Mu-
nicipal da Receita da cidade. Nosso foco particular para este laboratório será todas as vendas de casa em
Ames entre 2006 e 2010. Essa coleção representa nossa população de interesse. Neste laboratório queremos
aprender sobre essas vendas de casa retirando pequenas amostra da população completa. Vamos importar
os dados.

download.file("http://www.openintro.org/stat/data/ames.RData", destfile = "ames.RData")

load("ames.RData")

Vemos que há muitas variáveis em nosso conjunto de dados, o suficiente para realizar uma análise apro-
fundada. Para este laboratório, restringiremos nossa atenção para somente duas variáveis: a área habitável
da casa acima do nível do solo em pés quadrados (Gr.Liv.Area) e o preço da venda (SalePrice). Para
economizar esforços ao longo do laboratório, crie duas variáveis com nomes curtos para representar essas
duas variáveis do conjunto de dados.

area <- ames$Gr.Liv.Area

price <- ames$SalePrice

Vamos dar uma olhada na distribuição da área em nossa população de vendas de casas calculando algumas
estatísticas sumárias e criando um histograma.

summary(area)

hist(area)

Exercício 1 Descreva a distribuição da população.

A Distribuição Amostral Desconhecida

Neste laboratório nós temos acesso à população inteira, mas isso raramente acontece na vida real. Reu-
nir informação sobre uma população inteira costuma ser muito custoso ou impossível. Por essa razão,
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frequentemente retiramos uma amostra da população e a utilizamos para compreender propriedades da
população.

Se estivermos interessados em estimar a área habitável média na cidade de Ames com base numa amostra,
podemos utilizar o seguite comando para sondar a população.

samp1 <- sample(area, 50)

Esse comando retira uma amostra aleatória simples de tamanho 50 do vetor area, que é atribuída à variável
samp1. É como se fôssemos ao banco de dados da Secretaria Municipal da Fazendo e retirássemos os
arquivos de 50 vendas de casas aleatoriamente. Trabalhar com esses 50 arquivos seria consideravelmente
mais simples do que lidar com todas as 2930 vendas de casas.

Exercício 2 Descreva a distribuição desta amostra. Como ela se compara à distribuição da
população?

Se estamos interessados em estimar a área habitável média nas casas da cidade de Ames utilizando esta
amostra, nossa melhor suposição é a média da amostra.

mean(samp1)

Dependendo de quais foram as 50 casas que foram sorteadas, sua estimativa como estar um pouco acima
ou abaixo da média populacional verdadeira de 1499,69 pés quadrados. De maneira geral, mesmo assim,
a média da amostra costuma ser uma estimativa muito boa da média da área habitável, e nós a obtemos
por meio de uma amostra de menos de 3% da população.

Exercício 3 Retire uma segunda amostra, também de 50 casos, e a atribua a uma variável
de nome samp2. Como a média de samp2 se compara à média de samp1? Vamos supor que
retiremos mais duas amostras, uma de de 100 casos e outra de 1000 casos. Qual você acha que
daria uma estimativa mais precisa da média populacional?

Não é surpreendente que, a cada vez que retiramos uma nova amostra aleatória, obtemos uma média
amostral diferente. É útil ter uma ideia de quanta variabilidade podemos esperar quando estimamos
a média populacional desta maneira. A distribuição das médias amostrais, denominada de distribuição
amostral, pode nos ajudar a compreeder essa variabilidade. Neste laboratório, uma vez que temos acesso
à população, podemos elaborar a distribuição amostral para a média amostral repetindo os passos acima
várias vezes. Agora geraremos 5000 amostras e calcularemos a média amostra de cada uma.

sample_means50 <- rep(0, 5000)

for(i in 1:5000){

samp <- sample(area, 50)

sample_means50[i] <- mean(samp)

}

hist(sample_means50)

Se você quiser ajustar a largura dos segmento do seu histograma para exibir um pouco mais de detalhes,
você pode fazê-lo mudando o argumento breaks.
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hist(sample_means50, breaks = 25)

Nós utilizamos o R para retirar 5000 amostras de 50 casos da população geral, calcular a média de cada
amostra, e registrar cada resultado num vetor denominado sample_means50. Na próxima página, compre-
enderemos como esse conjunto de códigos funciona.

Exercício 4 A variável sample_means50 contém quantos elementos? Descreva a distribuição
amostral, e certifique-se de prestar atenção especificamente em seu centro. Você acha que a
distribuilção mudaria se coletássemos 50.000 médias amostrais?

Interlúdio: O Comando for para Repetições

Vamos nos afastar da estatística por um momento para comprender melhor o último bloco de código.
Você acabou de rodar seu primeiro loop, uma repetição de uma mesma sequência de instruções que é
fundamental para a programação de computadores. A ideia por trás do loop é a noção de iteração: ele
permite que você execute um código quantas vezes quiser sem ter que digitar cada iteração. Na caso
acima, nós queríamos iterar as duas linhas de código que estão dentro das chaves, que retiram uma
amostra aleatória de 50 casos da variável area e então salva a média da amostra no vetor sample_means50.
Sem o loop, programar isso seria tedioso:

sample_means50 <- rep(0, 5000)

samp <- sample(area, 50)

sample_means50[1] <- mean(samp)

samp <- sample(area, 50)

sample_means50[2] <- mean(samp)

samp <- sample(area, 50)

sample_means50[3] <- mean(samp)

samp <- sample(area, 50)

sample_means50[4] <- mean(samp)

e assim por diante...

Usando o comando for para implementar um loop, essas milhares de linhas de código são comprimidas
em um punhado de linhas. Adicionamos uma linha extra ao código abaixo, que imprime a variável i em
cada iteração do loop. Rode este código.

sample_means50 <- rep(0, 5000)

for(i in 1:5000){

samp <- sample(area, 50)

sample_means50[i] <- mean(samp)

print(i)

}

Vamos examinar este código linha a linha para compreender o que ele faz. Na primeira linha nós inicia-
lizamos um vetor. Nesse caso, criamos um vetor com 5000 zeros denominado sample_means50. Esse vetor
armazenará os valores gerados dentro do loop.
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A segunda linha executa o loop. A sintaxe pode ser lida mais ou menos como, “para cada elemento i de 1
a 5000, execute as seguintes linhas de código”. Você pode interpretar o i como um contador que mantém
o registro de qual loop você está. Portanto, mais precisamente, o loop será executado uma vez quando i=1,
e então mais uma vez quando i=2, e assim por diante até i=5000.

A parte principal do loop se encontra dentro das chaves, e esse conjunto de linhas de código é executado
para cada valor de i. Aqui, em cada iteração, selecionamos uma amostra aleatória de 50 elementos a
partir da variável area, calculamos sua média, e registramos seu valor como o iésimo elemento do vetor
sample_means50.

Para demonstrar que isso está de fato acontecento, pedimos ao R para imprimir o valor de i em cada
iteração. Esta linha de código é opcional e é usada somente para mostrar o que está acontecendo enquando
o loop do comando for está em execução.

O loop nos permite não somente rodar o código 5000 vezes, mas também armazenar os resultados ordena-
damente, elemento por elemento, num vetor vazio que inicializamos nas primeiras linhas.

Exercício 5 Para certificar que você compreendeu o que você fez neste loop, experimente rodar
uma versão menor. Inicialize um vetor com 100 zeros com o nome sample_means_small.
Execute um loop que retira uma amostra de 50 elementos da variável area e armazena o média
amostral no vetor sample_means_small, mas que repete a iteração de 1 a 100. Imprima o
resultado em sua tela (basta digitar sample_means_small no console e pressionar enter). Há
quantos elementos no objeto sample_means_small? O que cada elemento representa?

Tamanho da Amostra e Distribuição Amostral

À parte dos aspectos mecânicos de programação, vamos retomar a razão pela qual utilizamos o loop do
comando for: para calcular uma distribuição amostral, especificamente, esta aqui:

hist(sample_means50)

A distribuição amostral que calculamos nos informa bastante sobre as estimativas da área habitável nas
casas na cidade de Ames. Uma vez que a média amostral é um estimador não-enviesado, a distribuição
amostral está centrada na verdadeira média da área habitável da população, e a dispersão da distribuição
indica quanta variabilidade é possível ao se amostra somente 50 vendas de casas.

Para ter uma ideia melhor do efeito do tamanho da amostra na distribuição amostral, vamos construir
mais duas distribuições amostrais: uma baseada numa amostra de 10 elementos e outra baseada numa
amostra de 100.

sample_means10 <- rep(0, 5000)

sample_means100 <- rep(0, 5000)

for(i in 1:5000){

samp <- sample(area, 10)

sample_means10[i] <- mean(samp)

samp <- sample(area, 100)

sample_means100[i] <- mean(samp)

}

Aqui podemos utilizar um único loop para construir duas distribuições adicionando mais algumas linhas
dentro das chaves. Não se preocupe com o fato de que samp é utilizado como o nome de dois obje-
tos diferentes. No segundo comando do loop, a média de samp é salva em seu devido lugar no vetor
sample_means10. Com a média já salva, podemos sobrescrever o objeto samp com uma nova amostra,
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desta vez de com 100 elementos. De maneira geral, quando você cria um objeto utilizando um nome que
já está em uso, o objeto antigo será substituído pelo novo.

Para verificar o efeito que diferentes tamanhos de amostra tem na distribuição amostral, crie gráficos das
três distribuições, um em cima do outro.

par(mfrow = c(3, 1))

xlimits = range(sample_means10)

hist(sample_means10, breaks = 20, xlim = xlimits)

hist(sample_means50, breaks = 20, xlim = xlimits)

hist(sample_means100, breaks = 20, xlim = xlimits)

O primeiro comando especifica que você quer dividir a área do gráfico em três linhas e uma coluna para
cada um dos gráficos†. O argumento breaks (“quebras”) especifica o número de segmentos utilizados
para construir o histograma. O argumento xlim especifica o intervalo no eixo x no hisograma, e ao defini-
lo como igual a xlimits para cada histograma, certificamo-nos de que todos os três histogramas serão
criados com os mesmos limites no eixo x.

Exercício 6 Quando o tamanho da amostra é maior, o que acontece com o centro da distribui-
ção? E com a dispersão?

Sua Vez

Até agora, nós nos ocupamos em estimar a média da área habitável nas casas do município de Ames.
Agora você tentará estimar a média dos preços das casas.

1. Retire uma amostra aleatória de 50 elementos da variável price (preço). Com essa amostra, qual é
sua melhor estimativa pontual para a média populacional?

2. Já que você tem acesso à população, simule a distribuição amostral de x̄price retirando 5000 amostras
de 50 elementos da população e calculando 5000 médias amostrais. Armazene essas médias em um
vetor com o nome sample_means50. Crie um gráfico com os resultados, e então descreva a forma
dessa distribuição amostral. Baseado nessa distribuição amostral, qual seria seu palpite para a média
dos preços das casas na população? Por fim, calcule e informe a média populacional.

3. Mude o tamanho da sua amostra de 50 para 150, e então calcule a distribuição amostral utilizando o
mesmo método descrito acima, e guarde as médias em um novo vetor com o nome sample_means150.
Descreva a forma dessa distribuição amostral e compare-a com a distribuição amostral para a amostra
de 50 elementos. Com base nessa distribuição amostral, qual seria seu palpite sobre a média dos
preços de vendas de casas no município de Ames?

4. Das distribuições amostrais calculadas nos exercícios 2 e 3, qual tem menor dispersão? Se esta-
mos interessados em estimativas que estão mais próximas do valor verdadeiro, preferiríamos uma
distribuição com uma dispersão pequena ou grande?

†Talvez você precise esticar um pouco sua janela com os gráficos para acomodar os gráficos extras. Para retornar para a configu-
ração padrão de criar um gráfico por vez, rode o seguinte comando:

par(mfrow = c(1, 1))
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5. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.
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Laboratório 4B: Fundamentos para Inferência Estatística - Intervalos de
Confiança

Amostragem de Ames, Iowa

Se você tem acesso aos dados de um população inteira, por exemplo o tamanho de cada casa na cidade
de Ames, Iowa, Estado Unidos, é fácil e direto responder a questões como “Qual é o tamanho de uma
casa típica na cidade de Ames?” e “Quanta variação existe no tamanho das casas?”. Se você tem acesso
somente a uma amostra da população, como costuma ser o caso, responder a essas perguntas fica mais
complicado. Qual é sua melhor estimativa para o tamanho típico de uma casa se você só sabe o tamanho
de algumas dezenas de casas? Esse tipo de situação requer que você use sua amostra para fazer inferências
a respeito da população em geral.

Os Dados

Na laboratório anterior nós exploramos os dados populacionais das casa da cidade de Ames, Iowa. Vamos
começar carregando esse conjunto de dados.

download.file("http://www.openintro.org/stat/data/ames.RData", destfile = "ames.RData")

load("ames.RData")

Neste laboratório começaremos com uma amostra aleatória simples de 60 elementos da população. Perceba
que o conjunto de dados contém informações sobre várias variáveis relativas às casas, mas para a primeira
parte do laboratório focaremos no tamanho da casa, representada pela variável Gr.Liv.Area.

population <- ames$Gr.Liv.Area

samp <- sample(population, 60)

Exercício 1 Descreva a distribuição da sua amostra. Qual é o tamanho “típico” dentro da sua
amostra? Procure esclarecer também como você interpretou o significado de “típico”.

Exercício 2 Você acha que a distribuição de outro aluno seria idêntica a sua? Você acha que
ela seria similar? Por quê, ou por quê não?

Intervalos de Confiança

Uma das maneiras mais comuns para se descrever o valor típico ou central de uma distribuição é por meio
da média. Neste caso podemos calcular a média da amostra utilizando

sample_mean <- mean(samp)
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Retome agora a pergunta que motivou este laboratório: baseado nesta amostra, o que podemos inferir
sobre a população? Baseado apenas nesta única amostra, a melhor estimativa da área habitacional das
casas vendidas em Ames seria a média amostral, geralmente representada como x̄ (aqui denominaremos
de sample_mean (“média amostral”)). A média amostral serve como uma boa estimativa pontual, mas seria
interessante também deixar claro quanta incerteza temos desta estimativa. Isso pode ser feito pelo uso de
um intervalo de confiança.

Podemos calcular um intervalo de confiança de 95% para a média amostral adicionando e subtraindo 1.96
erros padrão da estimativa pontual.†

se <- sd(samp)/sqrt(60)

lower <- sample_mean - 1.96 * se

upper <- sample_mean + 1.96 * se

c(lower, upper)

Acabamos de fazer uma inferência importante: mesmo que não saibamos como a população inteira se
distribui, temos 95% de confiança de que a média verdadeira do tamanho das casas em Ames se encontra
entre os valores lower (limite inferior do intervalo de confiança) e upper (limite superior do intervalo
de confiança). Contudo, existem algumas condições que precisam ser atendidas para esse intervalo ser
válido.

Exercício 3 Para o intervalos de confiança ser válido, a média amostral precisa ter distribuição
normal e ter um erro padrão igual a s/

√
n. Quais condições precisam ser atendidas para isso

ser verdadeiro?

Níveis de Confiança

Exercício 4 O que significa “95% de confiança”? Se você não tem certeza, retome a Seção 4.2.2.

Neste caso nós temos a comodidade de saber a verdadeira média populacional, uma vez que temos os
dados da população inteira. Este valor pode ser calculado utilizando o seguinte comando:

mean(population)

Exercício 5 O seu intervalo de confiança contém a verdadeira média do tamanho das casas em
Ames? Se você está trabalhando neste laboratório em uma sala de aula, o intervalo de seus
colegas também contém esse valor?

Exercício 6 Cada aluno de sua turma deve ter obtido um intervalo de confiança um pouco
diferente. Que proporção desses intervalos você espera que contenha a verdadeira média
populacional? Por quê? Se você está trabalhando neste laboratório em um sala de aula, reúna
informações sobre os intervalos criados pelos outros alunos da turma e calcule a proporção de
intervalos que contém a verdadeira média populacional.

Utilizando o R, vamos criar várias amostra para aprender um pouco mais a respeito de como as médias

†Confira a seção 4.2.3 se você não está familiarizado com essa fórmula.
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amostrais e os intervalos de confiança variam de uma amostra para outra. Loops são úteis para isso.§

Eis o esboço do processo:

(1) Obter uma amostra aleatória.

(2) Calcular a média e o desvio padrão da amostra.

(3) Utilizar estas estatísticas para calcular um intervalos de confiança.

(4) Repetir as etapas (1)-(3) 50 vezes.

Mas antes de implementar esse processo, precisamos primeiro criar vetores vazios nos quais possamos
salvar as médias e desvios padrão que serão calculados para cada amostra. Ao mesmo tempo, vamos
também armazenar o tamanho da amostra como n.

samp_mean <- rep(NA, 50)

samp_sd <- rep(NA, 50)

n <- 60

Agora estamos prontos para o loop, com o qual calculamos as médias e desvios padrão de 50 amostras
aleatórias.

for(i in 1:50){

samp <- sample(population, n) # obtém uma amostra de n = 60 elementos da população

samp_mean[i] <- mean(samp) # salva a média amostral no i-ésimo elemento de samp_mean

samp_sd[i] <- sd(samp) # salva o dp da amostra como o i-ésimo elemento de samp_sd

}

Por fim, construímos os intervalos de confiança.

lower_vector <- samp_mean - 1.96 * samp_sd / sqrt(n)

upper_vector <- samp_mean + 1.96 * samp_sd / sqrt(n)

Os limites inferiores destes 50 intervalos de confiança são armazenados na vetor lower_vector, e o limites
superiores são armazenados no vetor upper_vector. Vamos visualizar o primeiro intervalo.

c(lower_vector[1],upper_vector[1])

Sua Vez

1. Utilizando a seguinte função (que foi carregada junto com o conjunto de dados), crie gráficos de todos
os intervalos. Que proporção dos intervalos de confiança contém a verdadeira média populacional?

§Se você não está familiarizado com loops, revise o Laboratório 4A.
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Essa proporção é exatamente igual ao nível de confiança? Se não, explique por quê.†

plot_ci(lower_vector, upper_vector, mean(population))

2. Escolha um intervalo de confiança de sua preferência, desde que não seja de 95%. Qual é o valor
crítico apropriado?

3. Calcule 50 intervalos de confiança utilizando o nível de confiança que você escolheu na questão an-
terior. Você não precisa obter novas amostras: simplesmente calcule os novos intervalos baseado nas
médias amostrais e desvios padrão que você já coletou. Utilizando a função plot_ci, crie gráficos de
todos os intervalos e calcule a proporção de intervalos que contém a verdadeira média populacional.
Compare essa proporção com o nível de confiança escolhido para os intervalos.

4. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.

†Essa figura pode parecer familiar (Verifique a Seção 4.2.2.)
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Laboratório 5: Inferência para Dados Numéricos

Nascimentos na Carolina do Norte

Em 2004, o estado da Carolina do Norte, Estado Unidos, disponibilizou um grande conjunto de dados
contendo informações sobre os nascimentos registrados no estado. Esse conjunto de dados é útil para
pesquisadores que estudam a relação entre hábitos e práticas de gestantes e o nascimento de seus filhos.
Nós trabalharemos com uma amostra aleatória das observações deste conjunto de dados.

Análise Exploratória

Carregue o conjunto de dados nc em seu espaço de trabalho.

download.file("http://www.openintro.org/stat/data/nc.RData", destfile = "nc.RData")

load("nc.RData")

Temos dados de 13 variáveis diferentes, algumas categoriais e outras numéricas. Cada variável representa
as seguintes informações:

fage idade do pai em anos.
mage idade da mãe em anos.

mature maioridade da mãe.
weeks duração da gestação em semanas.
premie se o nascimento é classificado como prematuro ou a termo.
visits número de visitas hospitalares durante a gravidez.
marital se a mãe estava casada (married) ou solteira (not married) no momento do nascimento.
gained peso ganho pela mãe durante a gravidez, em libras.
weight peso do bebê no nascimento, em libras.

lowbirthweight se o bebê foi classificado como tendo baixo peso ao nascer (low) ou não (not low).
gender sexo do bebê, feminino (female) ou masculino (male).
habit se a mãe é não-fumante (nonsmoker) ou fumante (smoker).

whitemom se a mãe é branca (white) ou não-branca (not white).

Exercício 1 Quais são os casos neste conjunto de dados? Há quantos casos em nossa amostra?

Como um primeiro passo na análise, devemos levar em consideração alguns sumários dos dados. Isso
pode ser feito utilizando o comando summary (“sumário”):

summary(nc)

Enquanto você confere os sumários das variáveis, considere quais variáveis são categoriais e quais são
numéricas. Para as variáveis numéricas, há algum caso atípico, um outlier? Se você não tem certeza ou
quer dar uma olhada mais aprofundada nos dados, crie um gráfico.

Considere a possibilidade de uma relação entre o hábito de fumar da mãe e o peso de seu bebê. Criar um
gráfico com os dados é uma etapa útil porque nos ajuda a visualizar tendências rapidamente, identificar
associações fortes, e elaborar questões de pesquisa.

Este é um produto da OpenIntro que é distribuído sob uma Licença Creative Commons Atribuição – Compartilhamento pela
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Exercício 2 Crie um gráfico de caixas lado-a-lado das variáveis habit (hábito) e weight (peso).
O que o gráfico revela sobre a relação entre essas duas variáveis?

O gráfico de caixas permite comparar as medianas das distribuições, mas podemos também comparar as
médias das distribuições utilizando a seguinte função para dividir a variável weight nos grupos definidos
pela variável habit, e então calcular a média de cada um utilizando a função mean.

by(nc$weight, nc$habit, mean)

Há uma diferença evidente, mas essa diferença é estatisticamente significante? Para responder a essa
questão, vamos realizar um teste de hipótese.

Inferência

Exercício 3 Verifique se as condições necessárias para realizar a inferência são atendidas.
Perceba que você precisará obter o tamanho das amostras para verificar as condições. Você
pode calcular o tamanho dos grupos utilizando o mesmo comando by utilizado acima, mas
substituindo a função mean pela função length.

Exercício 4 Escreva as hipóteses para testar se a média dos pesos dos bebês que nasceram de
mães fumantes é diferente daqueles que nasceram de mães não fumantes.

Em seguida, utilizaremos uma nova função, inference, que será utilizada para realizar os testes de hipó-
tese e para construir os intervalos de confiança.

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,

alternative = "twosided", method = "theoretical")

Vamos com calma para analisar cada argumento desta função personalizada.

• O primeiro argumento é y, que é a variável resposta na qual estamos interessados: nc$weight (peso).

• O segundo argumento é a variável explicativa, x, que é a variável que divide os dados em dois
grupos, fumantes e não fumantes: nc$habit.

• O terceiro argumento, est, é o parâmetro no qual estamos interessados: "mean" (média) (há outras
opções: "median" (mediana), ou "proportion" (proporção)).

• Em seguida decidimos sobre o tipo de inferência que queremos (type): um teste de hipótese ("ht")
ou um intervalo de confiança ("ci").

• Quando realizamos um teste de hipótese, também precisamos informar o valor nulo (null), que neste
caso é 0, já que a hipótese nula supõe que as duas médias populacionais são iguais uma a outra.

• A hipótese alternativa (alternative) pode ser "less" (menor), "greater" (maior), ou "twosided"

(bi-caudal).

• Por fim, o método (method) de inferência pode ser "theoretical" (teórico) ou "simulation" (base-
ado em simulações).

Exercício 5 Mude o argumento type (tipo) para "ci" para construir e registrar um intervalo
de confiança para a diferença entre os pesos dos bebê que nasceram de mães fumantes e não
fumantes.

2



Por padrão, a função utilizada informa um intervalo para a diferença (µnão− f umante − µ f umante) (a diferença
entre médias dos dois grupos). Podemos mudar facilmente essa ordem utilizando o argumento order

(ordem):

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,

alternative = "twosided", method = "theoretical",

order = c("smoker","nonsmoker"))

Sua Vez

1. Calcule o intervalo de confiança de 95% para a duração média das gravidezes (weeks) e o interprete
no contexto do conjunto de dados. Perceba que, uma vez que você está realizando uma inferência
sobre um único parâmetro populacional, não há nenhuma variáveis explanatória, e portanto você
pode omitir a variável x da função.

2. Calcule um novo intervalo de confiança para o mesmo parâmetro com nível de confiança de 90%.
Você pode mudar o nível de confiança adicionando um novo argumento à função: conflevel =0.90.

3. Realize um teste de hipótese para avaliar se o a média do peso ganho pelas mães mais jovens é
diferente da média de peso ganho pelas mães mais velhas.

4. Agora, um tarefa não-inferencial: determine o ponto de corte da idade das mães jovens e maduras.
Utilize um método da sua escolha, e explique como seu método funciona.

5. Escolha um par de variáveis, sendo uma numérica e outra categorial, e desenvolva um pergunta de
pesquisa para avaliar a relação entre essas variáveis. Formule a questão de maneira que ela possa ser
respondida utilizando um teste de hipótese e/ou um intervalo de confiança. Responda a sua questão
utilizando a função inference, informe os resultados estatísticos, e também elabora uma explicação
em linguagem simples.

6. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.
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Laboratório 6: Inferência para Dados Categoriais

Em agosto de 2012, agências de notícias como Washington Post e o Huffington Post publicaram reportagens
sobre o aumento do ateísmo na América do Norte. A fonte da reportagem foi uma pesquisa que perguntou
às pessoas, “Independente de você frequentar algum culto religioso ou não, você diria que você é uma
pessoa religiosa, não é uma pessoa religiosa ou é um ateu convicto?” Esse tipo de pergunta, que pede
para as pessoas se classificarem de uma forma ou outra, é comum em pesquisas de opinião e gera dados
categoriais. Neste laboratório vamos explorar a pesquisa sobre ateísmo e investigar o que está em jogo
quando fazemos inferências sobre proporções populacionais utilizando dados categoriais.

A Pesquisa de Opinião

Para acessar o comunicado à imprensa da pesquisa de opinião, realizada pela WIN-Gallup International,
clique no link abaixo:

http://www.wingia.com/web/files/richeditor/filemanager/Global_INDEX_of_Religiosity_and_Atheism_PR__6.pdf

Revise com cuidado as informações do relatório e então tente resolver as seguintes questões:

Exercício 1 No primeiro parágrafo, vários resultados importantes são relatados. Essas por-
centagens parecem ser estatísticas amostrais (derivadas dos dados da amostra) ou parâmetros
populacionais?

Exercício 2 O título do relatório é “Índice Global de Religiosidade e Ateísmo” (“Global Index
of Religiosity and Atheism”). Para generalizar os resultados do relatório para a população hu-
mana global, o que devemos assumir a respeito do método amostral? Parece ser uma suposição
razoável?

Os Dados

Preste atenção na Tabela 6 (páginas 15 e 16), que informa o tamanho da amostra e o percentual de respostas
de todos os 57 países que fizeram parte da pesquisa. Mesmo sendo um formato útil para resumir os dados,
basearemos nossas análises no conjunto de dados original das respostas individuais à pesquisa. Carregue
esse conjunto de dados no R utilizando o seguinte comando.

download.file("http://www.openintro.org/stat/data/atheism.RData", destfile = "atheism.RData")

load("atheism.RData")

Exercício 3 A que corresponde cada linha da Tabela 6? A que corresponde cada linha do banco
de dados atheism (ateísmo)?

Para investigar o elo entre essas duas maneiras de organizar esses dados, dê uma olhada na proporção
estimada de ateus nos Estados Unidos. Perto do fim da Tabela 6, verificamos que é 5%. Devemos ser
capazes de chegar ao mesmo número usando o banco de dados atheism.

Exercício 4 Utilizando o comando abaixo, crie um novo banco de dados denominado us12 que
contém apenas as linhas do banco de dados atheism associadas aos respondentes da pesquisa

Este é um produto da OpenIntro que é distribuído sob uma Licença Creative Commons Atribuição – Compartilhamento pela
Mesma Licença 3.0 (http://creativecommons.org/licenses/by-sa/3.0). Este laboratório foi adaptado para a OpenIntro por Andrew Bray
e Mine Çetinkaya-Rundel de um laboratório escrito por Mark Hansen do departamento de Estatística da UCLA. Tradução para o
português por Erikson Kaszubowski.
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realizada em 2012 nos Estados Unidos. Em seguida, calcule a proporção de respostas dos que
se afirmam ateus. Ela é semelhante à porcentagem da Tabela 6? Se não, por quê?

us12 <- subset(atheism, atheism$nationality == "United States" & atheism$year == "2012")

Inferência de Proporções

Como foi sugerido pelo Exercício 1, a Tabela 6 apresenta estatísticas, ou seja, cálculos feitos a partir da
amostra de 51.927 pessoas. O que nós gostaríamos, porém, é obter informações sobre os parâmetros po-
pulacionais. Você pode responder à pergunta “Qual a proporção de pessoas na amostra que informaram
serem ateus?” com uma estatística; por outro lado, uma questão como “Qual a proporção de pessoas na
Terra que informariam serem ateus?” é respondida com uma estimativa do parâmetro.

As ferramentas inferenciais para estimar proporções populacional são análogas àquelas utilizadas para as
médias no último laboratório: o intervalo de confiança e o teste de hipótese.

Exercício 5 Descreva as condições para inferência necessárias para construir um intervalo de
confiança de 95% para a proporção de ateus nos Estados Unido em 2012. Você está confiante
de que todas as condições são atendidas?

Se as condições para inferência são razoáveis, podemos calcular o erro padrão e construir o intervalo de
confiança manualmente, ou deixar que a função inference faça isso por nós.

inference(y = us12$response, est = "proportion", type = "ci", method = "theoretical",

success = "atheist")

Perceba que, uma vez que o objetivo é construir uma estimativa intervalar para uma proporção, é necessá-
rio especificar o que constitui um “sucesso”, que nesse caso é a resposta atheist (ateu).

Apesar de intervalos de confiança formais e testes de hipótese não aparecerem no relatório, sugestões de
inferência aparecem no final da página 7: “Em geral, a margem de erro para pesquisas de opinião deste
tipo é de ±3 − 5% com 95% de confiança.”

Exercício 6 Com base nos resultados do R, qual é a margem de erro para a estimativa da
proporção de ateus nos EUA em 2012?

Exercício 7 Utilizando a função inference, calcule os intervalos de confiança para a proporção
de ateus em 2012 para dois outros países de sua escolha, e informe as margens de erro associ-
adas a eles. Certifique-se de observar se as condições para inferência são atendidas. Pode ser
útil primeiro criar novos conjuntos de dados para cada um dos dois países, e então usar essas
conjuntos de dados junto com a função inference para construir os intervalos de confiança.

Como a Proporção Afeta a Margem de Erro?

Imagine que você fez um levantamento com 1000 pessoas a respeito de duas questões: você é mulher? E
você é canhoto? Uma vez que ambas as proporções amostrais foram calculadas a partir de um mesmo
tamanho de amostra, elas devem ter a mesma margem de erro, certo? Errado! Apesar da margem de erro
mudar em relação ao tamanho da amostra, ela também é afetada pela proporção.

Lembre-se da fórmula para calcular o erro padrão: EP =
√

p(1 − p)/n. O resultado é utilizado na
fórmula para calcular a margem de erro para um intervalo de confiança de 95%: ME = 1.96 × EP =
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1.96 ×
√

p(1 − p)/n. Já que a proporção populacional p se encontra na fórmula para calcular o ME, faz
sentido que a margem de erro depende, de alguma forma, da proporção populacional. Podemos visualizar
essa relação criando um gráfico relacionando ME com p.

O primeiro passo é criar um vetor p, que é uma sequência de 0 a 1 com cada número separado por 0, 01.
Podemos então criar um vetor para a margem de erro (me), associando com cada um dos palores de p

utilizando a fórmula aproximada já conhecida (ME = 2 × SE). Por fim, fazemos um gráfico com os dois
vetores para revelar a relação entre eles.

n <- 1000

p <- seq(0, 1, 0.01)

me <- 2*sqrt(p*(1 - p)/n)

plot(me ~ p)

Exercício 8 Descreva a relação entre p e me.

Condição de Sucesso ou Fracasso

O livro enfatiza que você deve sempre verificar as condições antes de fazer qualquer inferência. Para
inferência de proporções, a proporção amostral pode ser considerada como se distribuindo de maneira
aproximadamente normal se for baseada numa amostra aleatória de observações independentes e se np ≥
10 e n(1 − p) ≥ 10. Essa regra geral é fácil o suficiente de ser seguida, mas deixa aberta a questão: o que
há de tão especial com o número 10? A resposta mais curta é: nada. Você pode argumentar que estaríamos
bem com 9 ou que deveríamos utilizar 11. O “melhor” valor para essa regra geral é, pelo menos em alguma
medida, arbitrário.

Podemos investigar as relações entre n e p e a forma da distribuição amostral utilizando simulações.
Para começar, simulamos o processo de retirar 5000 amostra de 1040 elementos de uma população com a
verdadeira proporção de ateus igual a 0.1. Para cada uma das 5000 amostras, calculamos p̂ e então criamos
um histograma para visualizar sua distribuição.

p <- 0.1

n <- 1040

p_hats <- rep(0, 5000)

for(i in 1:5000){

samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))

p_hats[i] <- sum(samp == "atheist")/n

}

hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))

Esses comandos constroem a distribuição amostral de p_hats por meio do loop do comando for que já
nos é familiar. Você pode pode ler o procedimentos amostral da primeira linha de código dentro do loop
como “retire uma amostra com reposição de n elementos a partir das opções de ateu e não-ateu com
probabilidades p e 1 − p, respectivamente.” A segunda linha do loop diz “calcule a proporção de ateus
nesta amostra e registre e valor.” O loop nos permite repetir esse processo 5.000 vezes para construir uma
boa representação da distribuição amostral.

Exercício 9 Descreva a distribuição amostral da proporção com n = 1040 e p = 0.1. Certifique-
se de identificar seu centro, dispersão e forma.
Dica: Lembre-se que o R tem funções como mean para calcular estatísticas descritivas.
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Exercício 10 Repita a simulação acima mais três vezes mas com diferentes tamanhos de amos-
tra e proporções: com n = 400 e p = 0.1, n = 1040 e p = 0.02, e n = 400 e p = 0.02.
Crie histogramas para as quatro distribuições e exiba-os em conjunto utilizando o comando
par(mfrow = c(2,2)). Talvez você precise expandir a janela do gráfico para acomodar o grá-
fico maior. Descreva as três distribuições amostrais novas. Com base nesses gráficos limitados,
como que n parece afetar a distribuição de p̂? Como que p afeta a distribuição amostral?

Depois de terminar, você pode resetar a disposição da janela de gráfico utilizando o comando par(mfrow

= c(1,1)) ou clicando no botão “Clear All” (“Limpar Tudo”) logo acima da janela de gráficos (se estiver
usando o RStudio). Preste atenção pois a última opção irá apagar todos os gráficos anteriores.

Exercício 11 Se você retomar a Tabela 6, verá que a Austrália tem uma proporção amostral
de 0,1 numa amostra de 1040, e que o Equador tem uma proporção amostral de 0,02 com
400 sujeitos. Vamos supor, para esse exercício, que essas estimativas pontuais são verdadeiras.
Dada a forma de suas respectivas distribuições amostrais, você acha razoável efetuar inferência
e informar a margem de erros, como o relatório faz?

Sua Vez

A questão sobre o ateísmo foi também feita pelo WIN-Gallup International numa pesquisa de opinião
parecida realizada em 2005.† A Tabela 4 na página 13 do relatório resume os resultados da pesquisa de
2005 a 2012 em 29 países.

1. Responda às duas perguntas seguintes utilizando a função inference. Como sempre, descreva as
hipóteses para qualquer teste que você realizar e esboce sobre as condições para inferência.

(a) Há evidência convincente de que a Espanha teve uma mudança em seu índice de ateísmo entre
2005 e 2012?
Dica: Crie um novo conjunto de dados para os respondentes da Espanha. Depois, utilize suas
respostas como a primeira entrada na função inference, e utilize a variável year (ano) para
definir os grupos.

(b) Há evidência convincente de que os Estados Unidos tiveram uma mudança em seu índice de
ateísmo entre 2005 e 2012?

2. Se de fato não houve nenhuma mudança no índice de ateísmo nos países listados na Tabela 4, em
quantos países você esperar detectar uma mudança (com um nível de significância de 0,05) simples-
mente por acaso?
Dica: Procure no índice do livro sobre erros do Tipo 1.

3. Suponha que você foi contratado pelo governo local para estimar a proporção de residentes que
participam de cultos religiosos semanalmente. De acordo com diretrizes, a estimativa deve ter uma
margem de erro inferior a 1% com nível de confiança de 95%. Você não tem nenhuma noção de que
valor supor para p. Quanto pessoas você teria que amostrar para garantir que você está dentro das
diretrizes?
Dica: Retome seu gráfico da relação entre p e a margem de erro. Não use o conjunto de dados para
responder a essa questão.

4. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.

†Assumimos aqui que o tamanho das amostras permaneceram iguais.
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Laboratório 7: Introdução à Regressão Linear

Preparação

O filme O Homem que Mudou o Jogo (Moneyball) aborda a “busca pelo segredo do sucesso no beisebol”. O
filme conta a história de um time de baixo orçamento, o Oakland Athletics, que acreditava que estatísticas
pouco utilizadas, tal como a habilidade de um jogador chegar a uma base, prediziam melhor a habilidade
de marcar pontos do que estatísticas mais comuns, como home runs, RBIs (runs batted in, pontos feitos
quando um jogador estava rebatendo), e média de rebatidas. Contratar jogadores que se destacavam
nessas estatísticas pouco utilizadas se mostrou muito mais econômico para o time.

Neste laboratório exploraremos os dados de todos os 30 times da Liga Principal de Beisebol dos Estados
Unidos e examinaremos a relação linear entre pontos marcados numa temporada e várias outras estatísticas
dos jogadores. Nosso objetivo será resumir essas relações de maneira visual e numérica para identificar
qual variável, se houver alguma, melhor nos ajuda a predizer os pontos marcados por um time numa
temporada.

Os Dados

Vamos carregar os dados da temporada de 2011.

download.file("http://www.openintro.org/stat/data/mlb11.RData", destfile = "mlb11.RData")

load("mlb11.RData")

Além dos pontos marcados, este conjunto de dados contém sete variáveis tradicionalmente utilizadas: vez
ao taco (at-bats), rebatidas (hits), home runs, média de rebatidas (batting average), eliminações (strikeouts),
roubos de bases (stolen bases), e vitórias†. Também foram incluídas três novas variáveis: percentual de
alcance de base (on-base percentage), percentual de potência (slugging percentage), e alcance de base mais po-
tência (on-base plus slugging). Para a primeira parte da análise consideraremos as sete variáveis tradicionais.
Ao final do laboratório, você trabalhará com as novas variáveis por conta própria.

Exercício 1 Que tipo de gráfico você utilizaria para mostrar a relação entre runs (pontos) e
alguma outra variável numérica? Crie um gráfico dessa relação utilizando a variável at_bats
como preditora. A relação parece ser linear? Se você soubesse o valor de at_bats (vez ao taco)
de um time, você se sentiria confiante para utilizar um modelo linear para predizer o número
de pontos (runs)?

Se a relação parece ser linear, podemos quantificar a força da relação utilizando o coeficiente de correla-
ção.

cor(mlb11$runs, mlb11$at_bats)

Este é um produto da OpenIntro que é distribuído sob uma Licença Creative Commons Atribuição – Compartilhamento pela
Mesma Licença 3.0 (http://creativecommons.org/licenses/by-sa/3.0). Este laboratório foi adaptado para a OpenIntro por Andrew Bray
e Mine Çetinkaya-Rundel de um laboratório escrito por Mark Hansen do departamento de Estatística da UCLA. Tradução para o
português por Erikson Kaszubowski.

†Apesar de não ser necessário para acompanhar o laboratório, se você quiser se familiarizar com as regras do beisebol e com
as estatísticas mais utilizadas, visite http://en.wikipedia.org/wiki/Baseball_rules e http://en.wikipedia.org/wiki/Baseball_statistics. Como os
termos usuais nem sempre tem um tradução exata para o português, manterei entre parênteses o termo original em inglês (N. do T.).
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Soma dos Quadrados dos Resíduos

Recorde como descrevemos a distribuição de uma única variável. Lembre-se que discutimos características
como tendência central, dispersão e forma. Também é útil poder descrever a relação entre duas variáveis
numéricas, como fizemos acima com as variáveis runs (pontos) e at_bats (vez ao taco).

Exercício 2 Examinando os gráficos do exercício anterior, descreva a relação entre essas duas
variáveis. Certifique-se de discutir a forma, a direção e a força da relação, bem como quaisquer
características incomuns.

Assim como utilizamos a média e o desvio padrão para resumir características importantes de uma única
variável, podemos resumir a relação entre essas duas variáveis por meio de uma linha que melhor descreve
sua associação. Utilize a seguinte função interativa para selecionar a linha que você acha que cruza a nuvem
de pontos da melhor maneira.

plot_ss(x = mlb11$at_bats, y = mlb11$runs)

Depois de executar esse comando, você será solicitado a clicar em dois ponto no gráfico para definir uma
linha. Depois que você fizer isso, a linha que você especificou será mostrada na cor preta e os resíduos na
cor azul. Perceba que há 30 resíduos, um para cada uma das 30 observações. Lembre-se que os resíduos
são a diferença entre os valores observados e o valor predito pela linha:

ei = yi − ŷi

A maneira mais comum de se fazer uma regressão linear é selecionar a linha que minimiza a soma dos
quadrados dos resíduos. Para visualizar o quadrado dos resíduos, você pode rodar novamente o comando
de geração do gráfico e adicionar o argumento showSquares = TRUE.

plot_ss(x = mlb11$at_bats, y = mlb11$runs, showSquares = TRUE)

Perceba que o resultado da função plot_ss fornece a inclinação (coeficiente angular) e o intercepto da sua
linha, bem como a soma dos quadrados.

Exercício 3 Utilizando a função plot_ss, escolha uma linha que consiga minimizar a soma
dos quadrados. Rode a função várias vezes. Qual foi a menor soma dos quadrados que você
obteve? Compare-a com os resultados obtidos por outros alunos.

O Modelo Linear

É bastante cansativo tentar obter a linha dos mínimos quadrados, ou seja, a linha que minimiza a soma
dos quadrados dos resíduos, por meio de tentativa e erro. Ao invés disso, podemos utilizar a função lm

no R para ajustar o modelo linear (também conhecido como linha de regressão).

m1 <- lm(runs ~ at_bats, data = mlb11)

O primeiro argumento da função lm é a fórmula descrita como y∼x. Aqui ela pode ser entendida como
“obtenha o modelo linear de runs (pontos) em função de at_bats (vez ao taco).” O segundo argumento
especifica que o R deve buscar no banco de dados mlb11 as variáveis runs e at_bats.
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O resultado da função lm é um objeto que contém todas as informações que precisamos sobre o modelo
linear que acabamos de ajustar. Podemos acessar essa informação utilizando a função summary.

summary(m1)

Vamos analisar o resultado passo a passo. Primeiramente, a fórmula utilizada para descrever o modelo é
apresentada no começo. Depois da fórmula você verá o resumo de cinco números dos resíduos. A tabela
“Coefficients” (coeficientes) apresentada em seguida é central; sua primeira coluna apresenta o intercepto
de y do modelo linear e o coeficiente da variável at_bats. Com essa tabela, podemos descrever a linha de
regressão de mínimos quadrados para o modelo linear:

ŷ = −2789.2429 + 0.6305 ∗ atbats

Uma última informação que abordaremos do resultado da função summary é o R-quadrado Múltiplo, ou
de maneira abreviada, R2. O valor do R2 representa a proporção de variabilidade na variável desfecho que
é explicada pela variável explicatória. Neste modelo, 37,7% da variabilidade dos pontos (runs) é explicada
pela vez ao taco (at-bats).

Exercício 4 Ajuste um novo modelo que utilize a variável homeruns para predizer runs (pon-
tos). Utilizando as estimativas dos resultados do R, escreva a equação da linha de regressão.
O que a inclinação (coeficiente angular) nos diz sobre a relação entre o sucesso de um time e
seus home runs?

Predição e Erro de Predição

Vamos criar uma gráfico de dispersão com a linha dos mínimos quadrados disposta junto com os pon-
tos.

plot(mlb11$runs ~ mlb11$at_bats)

abline(m1)

A função abline traça uma linha baseada em sua inclinação e intercepto. Aqui, utilizamos um atalho
fornecendo o modelo m1, que contém as estimativas do dois parâmetros. Essa linha pode ser utilizada para
predizer y a partir de qualquer valor de x. Quando são feitas predições para valores de x que estão além
do intervalo dos dados observados, denominamos essas predições de extrapolações e geralmente não é algo
recomendável. Contudo, predições feitas dentro do intervalo dos dados são mais confiáveis. Elas também
são utilizadas para calcular os resíduos.

Exercício 5 Se o gerente de um time visse a linha de regressão dos mínimos quadrados e
não os dados reais, quantos ponto (runs) ele prediria para um time com 5.578 vezes ao taco
(at-bats)? Esse valor superestima ou subestima o valor real, e por quanto? Em outras palavras,
qual é o resíduo para essa predição?

Diagnósticos do Modelo

Para avaliar se um modelo linear é confiável, precisamos verificar (1) a linearidade, (2) resíduos normal-
mente distribuídos, e (3) variância constante.

(1) Linearidade: Você já verificou se a relação entre pontos (runs) e vezes ao taco (at-bats) é linear utilizando
o gráfico de dispersão. Deveríamos também verificar essa condição utilizando um gráfico de resíduos
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em função da variável vez ao taco (at-bats). Lembre-se que todo código após um # é um comentário
para auxiliar a compreender o código e é ignorado pelo R.

plot(m1$residuals ~ mlb11$at_bats)

abline(h = 0, lty = 3) # adiciona uma linha pontilhada horizontal em y = 0

Exercício 6 Há algum padrão aparente do gráfico de resíduos? O que isso indica sobre a
linearidade da relação entre pontos (runs) e vezes ao taco (at-bats)?

(2) Resíduos normalmente distribuídos: Para verificar essa condição, podemos conferir o histograma dos
resíduos:

hist(m1$residuals)

ou um gráfico de probabilidade normal dos resíduos.

qqnorm(m1$residuals)

qqline(m1$residuals) # adiciona uma linha diagonal ao gráfico de probabilidade normal

Exercício 7 Com base no histograma e no gráfico de probabilidade normal, a condição de
distribuição normal dos resíduos parece ser atendida?

(3) Variância constante:

Exercício 8 Com base no gráfico criado em (1), a condição de variância constante parece ser
atendida?

Sua Vez

1. Escolha outra variável tradicional contida no banco de dados mlb11 que você acha que poderia ser
um bom preditor da variável runs (pontos). Crie um gráfico de dispersão das duas variáveis e ajuste
um modelo linear. Visualmente, parece haver uma relação linear?

2. Compare essa relação com a relação entre runs (pontos) e at_bats (vez ao taco). Utilize os valores
R2 do sumário dos dois modelos para compará-los. A variável que vocês escolheu parece predizer
runs (pontos) melhor do que at_bats (vez ao taco)? Como você justificaria sua resposta?

3. Agora que você pode resumir a relação linear entre duas variáveis, investigue a relação entre runs

(pontos) e cada uma das outras cinco variáveis tradicionalmente utilizadas no beisebol. Qual variável
prediz melhor o valor de runs? Justifique sua conclusão utilizando métodos gráficos e numéricos
que já discutimos (para ser conciso, inclua apenas os resultados da melhor variável, não de todas as
cinco).
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4. Agora examine as três variáveis mais recentes. Essas são as estatísticas utilizadas pelo autor do
filme O Homem que Mudou o Jogo para predizer o sucesso de um time. De modo geral, elas são
mais ou menos eficazes para predizer os pontos do que as variáveis mais tradicionais? Explique
utilizando evidências gráficas e numéricas. De todas as dez variáveis que nós analisamos, qual
parece ser o melhor preditor da variável runs (pontos)? Utilizando as informações limitadas (ou não
tão limitadas) que você conhece sobre estas estatísticas do beisebol, seu resultado faz sentido?

5. Verifique os diagnósticos do modelo para o modelo de regressão com a variável que você escolheu
como o melhor preditor dos pontos (runs).

6. Quais conceitos do livro são abordados neste laboratório? Quais conceitos, se houver algum, que
não são abordados no livro? Você viu esses conceito em algum outro lugar, p.e., aulas, seções de
discussão, laboratórios anteriores, ou tarefas de casa? Seja específico em sua resposta.
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Laboratório 8: Regressão Linear Múltipla

Dando Nota ao Professor

Vários cursos universitários dão aos alunos a oportunidade de avaliar o curso e o professor de maneira
anônima ao final do semestre. Contudo, o uso das avaliações dos alunos como um indicador da qualidade
do curso e a eficácia do ensino é frequentemente criticado porque essas medidas podem refletir a influência
de características não relacionadas à docência, tal como a aparência física do professor. O artigo intitulado
“Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh &
Parker, 2005)∗ descreve como professores que são vistos como tendo melhor aparência recebem avaliações
mais altas.†

Neste laboratório analisaremos os dados deste estudo para aprender o que influencia uma avaliação posi-
tiva de um professor.

Os Dados

Os dados foram coletados a partir das avaliações discentes de final de semestre de uma grande amostra
de professores da Universidade do Texas em Austin. Além disso, seis estudantes avaliaram a aparência
física dos professores.‡ O resultado é um banco de dados no qual cada linha contém diferentes disciplinas
e cada coluna representa as variáveis sobre as disciplinas e os professores.

download.file("http://www.openintro.org/stat/data/evals.RData", destfile = "evals.RData")

load("evals.RData")

Explorando os Dados

Exercício 1 Esse estudo é observacional ou experimental? O pergunta de pesquisa original
proposta no artigo é se a beleza influencia diretamente as avaliações das disciplinas. Levando
em consideração o desenho da pesquisa, é possível responder a essa pergunta tal como ela está
formulada? Se não, reformule a pergunta.

Exercício 2 Descreva a distribuição da variável score. A distribuição é assimétrica? O que
sua forma permite dizer sobre a maneira como os alunos avaliam as disciplinas? A forma
corresponde ao que você esperava ver? Por quê, ou por que não?

Exercício 3 Com exceção da variável score, escolha duas outras variáveis e descreva sua
relação utilizando as técnicas apropriadas (gráfico de dispersão, gráfico de caixas lado-a-lado,
ou gráfico de mosaico).

Este é um produto da OpenIntro que é distribuído sob uma Licença Creative Commons Atribuição – Compartilhamento pela
Mesma Licença 3.0 (http://creativecommons.org/licenses/by-sa/3.0). Este laboratório foi adaptado para a OpenIntro por Andrew Bray
e Mine Çetinkaya-Rundel de um laboratório escrito por Mark Hansen do departamento de Estatística da UCLA. Tradução para o
português por Erikson Kaszubowski.

∗“Beleza na sala de aula: a pulcritude do professor e produtividade pedagógica putativa”
†Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity,

Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013.
(http://www.sciencedirect.com/science/article/pii/S0272775704001165).

‡Esta é uma versão levemente modificada do conjunto de dados original que foi publicado como parte dos dados de reprodução
para o livro Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).
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score pontuação média da avaliação do docente: (1) muito insatisfatório - (5) excelente.
rank nível do professor: horista (teaching), assistente (tenure track), titular (tenured).∗

ethnicity etnia do professor: não-minoria, minoria.
gender sexo do professor: feminino, masculino.

language língua da universidade frequentada pelo professor: inglês ou não-inglês.
age idade do professor.

cls_perc_eval percentual de alunos na turma que completaram a avaliação.
cls_did_eval número de alunos na turma que completaram a avaliação.
cls_students número total de alunos na turma.

cls_level nível da disciplina: introdutória, avançada.
cls_profs número de professores ministrando módulos na disciplina dentro da amostra: único, múltiplos.

cls_credits número de créditos da disciplina: um crédito, múltiplos créditos.
bty_f1lower avaliação da beleza do professor por aluna de nível inicial: (1) mais baixo - (10) mais alto.
bty_f1upper avaliação da beleza do professor por aluna de nível avançado: (1) mais baixo - (10) mais alto.
bty_f2upper avaliação da beleza do professor por segunda aluna de nível avançado: (1) mais baixo - (10) mais alto.
bty_m1lower avaliação da beleza do professor por aluno de nível inicial: (1) mais baixo - (10) mais alto.
bty_m1upper avaliação da beleza do professor por aluno de nível avançado: (1) mais baixo - (10) mais alto.
bty_m2upper avaliação da beleza do professor por segundo aluno de nível avançado: (1) mais baixo - (10) mais alto.

bty_avg média da avaliação da beleza do professor.
pic_outfit roupa do professor na foto avaliada: informal, formal.
pic_color cor da foto avaliada: colorida, preto e branco.

Regressão Linear Simples

O fenômeno proposto pelo estudo é que professores com melhor aparência são avaliados de maneira mais
favorável. Vamos criar um gráfico de dispersão para verificar se isso é verdade:

plot(evals$score ~ evals$bty_avg)

Antes de tirar conclusões sobre a tendência, compare o número de observações no banco de dados com o
número de pontos no gráfico de dispersão. Há algo de errado?

Exercício 4 Refaça o gráfico de dispersão, mas agora utilize a função jitter() no eixo y ou x.
(Utilize o comando ?jitter para aprender mais a respeito.) O que estava errado no gráfico de
dispersão inicial?

Exercício 5 Vamos verificar se a tendência aparente no gráfico é algo além de variação natural.
Ajuste um modelo linear denominado m_bty para predizer a avaliação média de um professor
a partir da média da avaliação da beleza e adicione a linha ao gráfico utilizando o comando
abline(m_bty). Escreva a equação do modelo linear e interprete a inclinação da reta. A média
da avaliação da beleza é um preditor estatisticamente significante? Essa variável parecer ser
um preditor com significância prática?

Exercício 6 Utilize gráficos de resíduos para avaliar se as condições para uma regressão utili-
zando mínimos quadrados são plausíveis. Utilize gráficos e comente cada uma deles (retome
o Laboratório 7 para relembrar como criá-los).

Regressão Linear Múltipla

O conjunto de dados contém diversas variáveis sobre a avaliação de beleza do professor: avaliações indi-
viduais de cada um dos seis estudantes que foram convidados a avaliar a aparência física dos professores
e a média dessas seis avaliações. Vamos dar uma olhada na relação entre uma dessas avaliações e a média
da avaliação da beleza.
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plot(evals$bty_avg ~ evals$bty_f1lower)

cor(evals$bty_avg, evals$bty_f1lower)

Como esperado, a relação é bem forte – afinal, a média das avaliações é calculada utilizando a avaliações
individuais. Podemos dar uma olhada nas relações entre todas as variáveis relativas à beleza (colunas 13 a
19) utilizando o seguinte comando:

plot(evals[,13:19])

Essas variáveis são colineares (correlacionadas), e adicionar mais do que uma delas ao modelo não agre-
garia muito valor. Neste caso, com esses preditores com altos índices de correlação, é melhor utilizar a
média das avaliações da beleza como o único representante dessas variáveis.

Para verificar se a beleza ainda é um preditor significante da avaliação docente depois que consideramos
o sexo do professor, podemos adicionar um termo para o sexo no modelo.

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)

summary(m_bty_gen)

Exercício 7 Valores p e estimativas dos parâmetros só são confiáveis se as condições para a
regressão são plausíveis. Verifique se as condições para esse modelo são plausíveis utilizando
gráficos de diagnóstico.

Exercício 8 A variável bty_avg continua sendo um preditor significante de score? A adição
da variável gender ao modelo alterou a estimativa do parâmetro de bty_avg?

Perceba que a estimativa para gender é agora denominada de gendermale. Você verá essa mudança de
nome sempre que adicionar uma variável categorial ao modelo. O motivo é que o R recodifica gender, alte-
rando seus valores iniciais female (feminino) e male (masculino) para uma variável indicativa denominada
gendermale que tem o valor 0 para mulheres e o valor 1 para homens (tais variáveis são frequentemente
chamada de variável “dummy” (falsa ou postiça)).

O resultado, para mulheres, é que o parâmetro estimado é multiplicado por zero, deixando a forma do
intercepto e da inclinação similar à regressão simples.

ŝcore = β̂0 + β̂1 × bty_avg + β̂2 × (0)

= β̂0 + β̂1 × bty_avg

Podemos traçar essa linha e a linha correspondente aos homens com a seguinte função personalizada:

multiLines(m_bty_gen)

Exercício 9 Qual é a equação da linha correspondente aos homens? (Dica: Para os homens, a
estimativa do parâmetro é multiplicada por 1.) Para dois professores que receberam a mesma
avaliação de beleza, qual gênero tende a ter as avaliações mais altas?

A decisão de chamar a variável indicativa de gendermale ao invés de genderfemale não tem nenhum sig-
nificado profundo. O R simplesmente codifica a categoria que vem em primeiro lugar na ordem alfabética
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como um 0.§

Exercício 10 Crie um novo modelo denominado m_bty_rank removendo a variável gender e
adicionando a variável rank. Como o R maneja variáveis categoriais que tem mais de dois
níveis? Perceba que a variável rank tem três níveis: horista (teaching), assistente (tenure track)
e titular (tenured).

A interpretação dos coeficientes na regressão múltipla é um pouco diferente da regressão simples. A
estimativa do coeficiente da variável bty_avg reflete quanto mais um grupo de professores deve receber
na avaliação da disciplina se sua avaliação de beleza é um ponto maior mantendo todas as outras variáveis
constantes. Neste caso, isso significa considerar somente professores do mesmo nível com avaliações de
bty_avg que estão separadas por um ponto.

A Busca pelo Melhor Modelo

Vamos começar com um modelo completo que prediz a avaliação docente com base no nível, etnia, sexo,
língua da universidade onde obteve seu diploma, idade, proporção de alunos que completaram as ava-
liações, tamanho da turma, nível da disciplina, número de professores, número de créditos, média da
avaliação da beleza, roupa e cor da foto avaliada.

Exercício 11 Qual variável você acha que teria o maior valor p neste modelo? Por quê? Dica:
Pense em qual variável você esperaria não estar associada à avaliação docente.

Vamos rodar o modelo. . .

m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval

+ cls_students + cls_level + cls_profs + cls_credits + bty_avg

+ pic_outfit + pic_color, data = evals)

summary(m_full)

Exercício 12 Verifique suas suspeitas do exercício anterior. Inclua os resultados do modelo em
sua resposta.

Exercício 13 Interprete o coeficiente associado à variável etnia.

Exercício 14 Retire a variável com o maior valor p e reajuste o modelo. Os coeficientes e suas
significâncias para as outras variáveis explicativas se alteraram? (Uma das coisas que torna
a regressão múltipla interessante é que a estimativa dos coeficientes dependem das outras
variáveis que são incluídas no modelo.) Se não, o que isso implica para questão de se a variável
retirada era ou não colinear com outras variáveis explicativas?

Exercício 15 Utilizando seleção inversa e o valor p como critério de seleção, determine qual é o
melhor modelo. Você não precisa mostrar todos os passos na sua resposta, apenas o resultado
do modelo final. Também escreva a equação do modelo linear para predizer a avaliação docente
com base no modelo final que você estabeleceu.

Exercício 16 Verifique se as condições para esse modelo são plausíveis utilizando gráficos de
diagnóstico.

§Você pode mudar o nível de referência de uma variável categorial, que é o nível codificado como um 0, utilizando a função
relevel. Utilize o comando ?relevel para aprender mais a respeito.
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Exercício 17 O artigo original descreve como os dados foram obtidos a partir de amostras
de professores da Universidade do Texas em Austin e incluindo todas as disciplinas que eles
ministraram. Considerando que cada linha representa uma disciplina, essa nova informação
poderia ter algum impacto em alguma das condições para a regressão linear?

Exercício 18 Com base no seu modelo final, descreva as características de um professor e
de uma disciplina da Universidade do Texas em Austin que estariam associadas com uma
avaliação alta.

Exercício 19 Você se sentiria confiante em generalizar suas conclusões para todos os professo-
res, de modo geral (e em qualquer universidade)? Por quê ou por que não?
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